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Abstract

The two-dimensional strip packing problem consists of packing in a rect-
angular strip of width 1 and minimum height a set of n rectangles, where
each rectangle has width 0 < w ≤ 1 and height 0 < h ≤ hmax. We
consider the high-multiplicity version of the problem in which there are
only K different types of rectangles. For the case when K = 3, we give
an algorithm providing a solution requiring at most height 3

2
hmax + ε

plus the height of an optimal solution, where ε is any positive constant.
For the case when K = 4, we give an algorithm providing a solution
requiring at most 7

3
hmax + ε plus the height of an optimal solution.

For the case when K > 3, we give an algorithm providing a solution
requiring at most b3

4
Kc+ 1 + ε plus the height of an optimal solution.

Keywords: LP-relaxation, two-dimensional strip packing, high multiplicity,
approximation algorithm

1 Introduction

The two-dimensional strip packing problem (2DSPP) is defined as follows.
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Definition 1 Given n rectangles with widths w1, w2, ..., wn and heights h1, h2, ...,
hn, where 0 < wi ≤ 1 for i = 1, 2, ..., n, the goal is to pack all the rectangles without
rotations or overlaps in a rectangular strip of width 1 and minimum height.

This is a well-studied problem with applications in areas as diverse as
resource allocation, scheduling, manufacturing, and transportation, among
others. 2DSPP is equivalent to the classical bin packing problem if all rectan-
gles have the same height, and since the bin packing problem is NP-hard [7]
then 2DSPP is also NP-hard; therefore, the best possible approximation ratio
achievable in polynomial time for 2DSPP is 3

2 unless P = NP.
Baker et al. [1] designed the first approximation algorithm for 2DSPP which

has approximation ratio 3. Coffman et al. [4] presented an algorithm with
approximation ratio 2.7, Sleator [15] improved the approximation ratio to 2.5,
and Schiermeyer [14] and Steinberg [17] further reduced the approximation
ratio to 2. Harren and Van Stee [8] later presented an algorithm with approx-
imation ratio 1.9396. The best known approximation algorithm for 2DSPP
is from Harren et al. [9] with approximation ratio 5

3 + ε. Several Asymptotic
Polynomial Time Approximation Schemes (APTAS) have been presented as
well: Kenyon and Rémila [13] gave an APTAS with an additive constant of
O( 1

ε2 ), and Jansen and Solis-Oba [11] improved Kenyon and Rémila’s addi-
tive constant to 1. Sviridenko [16] presented a polynomial time algorithm that
computes a solution of value OPT + O(

√
OPT logOPT ), where OPT is the

value of an optimal solution.
In this paper we study the two-dimensional high multiplicity strip packing

problem (2DHMSPP), in which there is only a fixed number K of different
rectangle types. First published in the 7th International Symposium, ISCO
2022, by Springer Nature [3], this paper extends the previous work by including
additional proofs of correctness for our algorithm, an algorithm for the case
when K = 4, a general algorithm for any fixed value for K, and experimental
results for our algorithm for the case when K = 3.

Note that the input to 2DHMSPP can be described using a list of only
3K numbers: the width wi, height hi, and number ni of rectangles of each
type Ti. Therefore, a challenging issue faced when designing an approximation
algorithm for the problem is to ensure that its running time is a polynomial
function of the size of the input. Observe that even describing a feasible solu-
tion for the problem using a polylogarithmic number of bits is not trivial as
this requires specifying the positions of n rectangles in the packing; therefore,
it is unknown whether 2DHMSPP belongs to the class NP.

We present an algorithm for 2DHMSPP for the case when K = 3 that
computes solutions of value at most OPT + 3

2hmax + ε, where OPT is the
value of an optimum solution, hmax is the height of the tallest rectangle, and
ε is a positive constant. This is an improvement over the works of Yu and
Solis-Oba [18] and Bloch-Hansen and Solis-Oba [2] whose algorithms computed
solutions of value at most OPT + 5

3hmax + ε. Our approach uses a formula-
tion of 2DHMSPP that allows fractional rectangles in the solution called the
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two-dimensional fractional strip packing problem (2DFSPP). We show that
a solution for 2DFSPP can be converted into a solution for 2DHMSPP by
a careful shifting, re-shaping, and combining of the fractional rectangles to
form whole rectangles while increasing the height of the solution by at most
3
2hmax + ε. Our analysis is nearly tight as it is not hard to see that there are
instances for which the corresponding fractional and integral solutions differ
by hmax.

We also give an algorithm for the case when K = 4 that computes solutions
of value at most OPT + 7

3hmax + ε, and an algorithm that for any fixed K
computes solutions of height at most OPT+b 34Khmaxc+hmax+ε. In addition
we performed an experimental evaluation of our algorithm for K = 3 and our
results show that our algorithm has much better than the above theoretical
upper bound.

The rest of the paper is organized in the following way. In Section 2 we
describe how to compute a near optimum solution for 2DFSPP. In Sections 3-
5 we present our algorithm for the case when K = 3. In Section 6 we describe
a polynomial time implementation of the algorithm. In Section 7 we present
our algorithm for the case when K = 4. In Section 8 we describe an algorithm
for the case when K > 3. Finally, in Section 9 we describe our experimental
results for the case when K = 3.

2 Solving 2DFSPP in Polynomial Time

2DHMSPP can be relaxed to the two-dimensional fractional strip packing prob-
lem (2DFSPP) by allowing horizontal cuts on the rectangles. A solution to
2DFSPP consists of a set of configurations. A base configuration Cj consists
of a multiset of rectangle types whose total width is at most 1 (see Figure 1).
A base configuration can be specified by indicating the number of rectangles
of each type Ti in it. For example, the base configuration shown in Figure 1
consists of 4 rectangles of type T1, 2 rectangles of type T2, and 3 rectangles of
type T3, so that base configuration can be represented with the tuple (4,2,3).

A group of rectangles following a base configuration can be stacked on top
of each other as shown in Figure 1, so that any horizontal line parallel to the
base of the strip drawn across any part of the group will intersect the same
multiset of rectangle types. This group of rectangles is called a configuration.
A vertical line drawn across any part of a configuration will intersect either
only rectangles of the same type, or empty space. The height of a vertical line
intersecting rectangles of a configuration is called the height of the configura-
tion. The configurations are stacked one on top of the other to form a fractional
packing (see Figure 2b). Note that the number of possible configurations is
O(nK ).

For a configuration Cj let ni,j be the number of rectangles of type Ti in its
base configuration, for i = 1, 2, ..., k. Let xj be a variable denoting the height
of Cj . Let J be the set of all possible configurations. 2DFSPP can be expressed
as the following linear program, hereafter referred to as linear program (1):
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Fig. 1: A configuration with base configuration (4,2,3). The fractional rectan-
gles are shaded in a darker color.

Minimize:
∑
Cj∈J

xj

Subject to:
∑
Cj∈J

xjni,j ≥ nihi, for each rectangle type Ti

xj ≥ 0, for each j ∈ J

(1)

where ni is the number of rectangles of type Ti and hi is the height of each
rectangle of type Ti. The objective function is to minimize the total height of
the packing.

We denote with OPT (I ) the height of an optimal packing for instance I of
2DHMSPP and denote with LIN (I ) an optimal solution to the corresponding
instance of 2DFSPP. It is not hard to see that LIN (I ) ≤ OPT (I ).

Note that 2DFSPP is identical to the fractional bin packing problem; in
the latter problem a base configuration is a set of items that fit within a single
bin and a solution to linear program (1) gives the fractional number of bins
needed to pack all the items. Therefore, we can use an algorithm of Karmarkar
and Karp [12] to compute a basic feasible solution for linear program (1) in
time O(K 9 log K log2 K

ε ) of value at most LIN (I ) + ε for any fixed ε > 0.
In any basic feasible solution, the number of nonzero variables is at most

the number of constraints [10]. Thus, the number of nonzero variables, and
therefore, the number of configurations used in a basic feasible solution for
linear program (1) is at most the number of rectangle types, K .

A simple algorithm for 2DHMSPP is to compute a basic feasible solution for
linear program (1) and replace each fractional rectangle with a whole one of the
corresponding type, shifting surrounding rectangles upwards as needed. Since
a basic feasible solution for (1) uses at most K configurations and replacing the
fractional rectangles with whole ones increases the height of a configuration
by at most hmax, this algorithm computes a solution to 2DHMSPP of height
at most OPT (I ) +Khmax + ε.
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3 Algorithm for 2DHMSPP with Three
Rectangle Types

When K = 3 a basic feasible solution for linear program (1) consists of at most
three configurations. Our algorithm performs several steps described in detail
in the next sections: 1) the fractional solution of the linear program is divided in
two parts: SCommon and SUncommon, and the fractional rectangles in SCommon
are rounded up; 2) in SUncommon the rectangles in each configuration are sorted
and SUncommon is further partitioned into vertical sections; 3) the vertical
sections are grouped according to the heights of the fractional rectangles in
them; and 4) the fractional rectangles in each group are combined and/or
rounded into whole ones depending on their heights.

We assume for now that the fractional solution computed by solving lin-
ear program (1) consists of three configurations. We will show later how to
deal with the case when the fractional solution consists of fewer than three
configurations.

3.1 Partitioning the Packing

For notational simplicity, in the sequel we assume hmax = 1. The three con-
figurations of the solution for linear program (1) are stacked one on top of the
other as shown in Figure 2a. Rectangles are rearranged horizontally within
the configurations so that rectangles of the same type appearing in all three
configurations are placed together in a section on the left side of the packing
called SCommon. In the remaining portion of the packing, called SUncommon,
each rectangle type is packed in at most 2 configurations (see Figure 2b).
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Fig. 2: (a) Rounding the fractional rectangles in SCommon increases the height
of the packing by at most 1. (b) Within each configuration, the rectangles in
SUncommon are sorted according to their fractional values.
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The fractional rectangles in SCommon are rounded up to form whole rect-
angles, increasing the height of the packing by at most 1 (see Figure 2a). In the
sequel, we discuss only how to round the fractional rectangles in SUncommon.

Within each configuration, we place the fractional rectangles in SUncommon
at the top of the configuration. Let r be a fractional rectangle. The ratio
between the height of r and the height of a rectangle of the same type as r
is called the fractional value of r. We sort the rectangles so that fractional
rectangles are sorted in non-decreasing order of their fractional values (see
Figure 2b).

We draw a vertical line at each point where two rectangles of different types
are packed side-by-side within a configuration. These vertical lines partition
SUncommon into vertical sections (see Figure 2b). Vertical sections are indexed
from left to right starting at index 1 for the leftmost section. Within some
vertical section si, let C1(i), C2(i), and C3(i) refer to the part of C1, C2, and
C3 that is located within si, respectively.

3.2 Grouping Vertical Sections

Within a vertical section si, each configuration has a single rectangle type. Let
f1(i), f2(i), and f3(i) represent the fractional values of the fractional rectangles
packed in si at the top of C1, C2, and C3, respectively.

We classify the vertical sections si ∈ SUncommon into three cases, depending
on the three fractional values f1(i), f2(i), and f3(i) as follows:

� SCase1 includes all sections si such that f1(i) + f2(i) + f3(i) ≤ 1.
� SCase2 includes all sections si such that f1(i) + f2(i) + f3(i) > 1 and either
f1(i) + f2(i) ≤ 1, f1(i) + f3(i) ≤ 1, or f2(i) + f3(i) ≤ 1.

� SCase3 includes all sections si such that f1(i) + f2(i) > 1, f1(i) + f3(i) > 1,
and f2(i) + f3(i) > 1. Note that for each si ∈ SCase3

f1(i) + f2(i) + f3(i) >
3

2
(2)

We denote with Bi,j , for i,j = 1,2,3, a vertical division that separates two
adjacent vertical sections belonging one to SCasei and the other to SCasej . For
example, in Figure 3a the rectangles in C1 define B1,1, the rectangles in C2

define B2,3, and the rectangles in C3 define B1,2. A rectangle r might intersect
vertical sections of two or more cases; hereafter, we call such a rectangle a
vertically split rectangle (see the rectangle with the arrow in Figure 2b).
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4 Algorithm for 2DHMSPP with Three
Rectangle Types and Two Rectangle Types
Per Configuration

We assume for now that within SUncommon each configuration contains exactly
two different rectangle types. We will show later how to deal with the other
cases.

4.1 Ordering the Configurations

We order the configurations as follows:

� If SCase3 is empty or SCase2 is empty then order the configurations so that
the rectangles in the bottom configuration define B1,2 or B1,3, respectively.

� Otherwise order the configurations so that the rectangles in the middle con-
figuration define B2,3 and if SCase1 and SCase2 are not empty the rectangles
in the bottom configuration must define B1,2. Note that the rectangles in
the middle configuration cannot define B2,3 and B1,2 because the middle
configuration has only rectangles of two different types.

After ordering the configurations as above, let the configuration packed at
the top be C1, the one in the middle be C2, and the one at the bottom be
C3. If we re-order the configurations later on, we will not re-name them; for
example, if we re-order the configurations such that C1 and C3 swap positions,
then C1 would now be on the bottom.

Having the rectangles in C2 define B2,3, if possible, allows flexibility for
shifting the rectangles in C2 ∩ SCase3 as we show; for some of our algorithm’s
cases we shift these rectangles downwards into empty space if the rectangles in
C3 ∩ SCase3 take up less height than the rectangles in C3 ∩ SCase2. Therefore,
ordering the configurations in the manner described above is important to our
algorithm.

Let a and b be the fractional values of the leftmost and rightmost fractions
in C1, respectively. Let c and d be the fractional values of the leftmost and
rightmost fractions in C2, and let e and f be the fractional values of the
leftmost and rightmost fractions in C3, respectively (see Figure 3).

We use a variable called count to track how many wide rectangle types
appear in a packing, where a rectangle type is considered to be wide if it is
the leftmost type in its configuration and it is packed, at least partially, within
SCase2 or SCase3. The presence (or absence) of these wide rectangle types
is important in deciding whether we can re-use the empty space left behind
when fractional rectangles are shifted around in SCase1 and SCase2 as we later
explain. We initialize variable count to 0. If any fractional rectangles with
fractional value a are packed within any vertical section of SCase2 or SCase3, we
increase the value of count by one. If any fractional rectangles with fractional
value c are packed within any section of SCase2 or SCase3, we increase the
value of count by one.
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4.2 Pairing Configurations

Our algorithm for rounding fractional rectangles sometimes needs to pair the
two configurations at the top of the packing. To explain how configurations
are packed, assume that C1 is the configuration at the top of the packing and
C2 is the middle configuration. When pairing C1 with C2 (see Figure 3a), we
flip C1 upside down. Let F1 be the set of fractional rectangles in each vertical
section si ∈ SCase1, and let F2 be the set of fractional rectangles from C1 and
C2 in each vertical section si ∈ SCase2 where f1(i) + f2(i) ≤ 1. We remove
the sets F1 and F2 from their original positions in the packing. If F1 ∪ F2 is
not empty we shift up the remaining rectangles in C1 so that the tops of the
topmost rectangles in C1 lie on a common line and the distance between C1

and C2 in vertical section s1 is 1. This creates a region in SCase1 and SCase2
of height at most 1 between C1 and C2 where we will pack F1 and F2; we call
this region CA1 (see Figure 3a). If F1∪F2 is empty, then region CA1 has initial
height zero, but its height might be increased later as explained below.

We re-shape each fractional rectangle r ∈ F1 ∪F2 so that its area does not
change but it has the full height of a rectangle of the same type as r.

Lemma 1 Let C1 and C2 be paired as described above. The re-shaped fractional
rectangles in F1 ∪ F2 can be packed in region CA1.

Proof Let vertical section si ∈ SCase1 have width Wi and let CA1(i) be the part of
CA1 within si. The total empty area Ai in CA1(i) is Ai ≥ Wi ∗ 1 = Wi. Since each
of C1(i), C2(i), and C3(i) has only one fractional rectangle type, the total area ai of
the fractional rectangles in C1(i), C2(i), and C3(i) is

ai ≤ (Wi ∗ f1(i)) + (Wi ∗ f2(i)) + (Wi ∗ f3(i)) ≤Wi ≤ Ai,
as the height of each rectangle is at most 1 and f1(i)+f2(i)+f3(i) ≤ 1 for si ∈ SCase1.

A similar argument can be made for the vertical sections si ∈ SCase2 for which
f1(i) + f2(i) ≤ 1. �

Corollary 1 After re-shaping the fractional rectangles in F1 ∪F2 we can pack them
in CA1 so that there is at most one fractional rectangle of each type in CA1.

Proof We combine the fractional rectangles in F1 ∪ F2 such that a whole rectangle
is formed whenever a sufficient number of pieces of the same type have been packed.
When fractional rectangles of the same type do not form a whole rectangle, they
merge to become one larger fractional rectangle. Therefore, at most one fractional
rectangle of each type may remain. By Lemma 1 the rectangles can be packed in
CA1. �

We round up the fractional rectangles from C1 and C2 in each vertical
section si ∈ SCase2 where f1(i) + f2(i) > 1 and for each vertical section si ∈
SCase3. Rounding up a fractional rectangle r means replacing it with a whole
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rectangle of the same type as r and shifting rectangles up as needed to make
room for the whole rectangle. When shifting rectangles from C1 we need ensure
that the tops of the topmost rectangles in C1 lie on a common line. Finally,
we round up the fractional rectangles in C3 ∩ SCase2 (see Figure 3a).

Note that after pairing two configurations and re-shaping rectangles some
whole rectangles might be vertically split by the boundaries B1,2 and B2,3.
Because of the way in which region CA1 was defined, the two pieces of a whole
rectangle that is vertically split by any of those boundaries are placed side-by-
side forming a whole rectangle. However, pieces of fractional rectangles that
are vertically split might be placed in different parts of the packing. Later we
show how to shift these fractional pieces to form whole rectangles.

4.3 Rounding Fractional Rectangles

We provide different algorithms for rounding fractional rectangles into whole
ones based on which of SCase1, SCase2, and SCase3 are not empty and what
the value of count is.

Lemma 2 If none of SCase1, SCase2, and SCase3 are empty, then count > 0.

Proof Assume that count = 0 and none of SCase1, SCase2, and SCase3 are empty.
Because of how we ordered the configurations, the rectangles in C2 define the bound-
ary B2,3 and therefore at least one of the fractional rectangles in C2 with fractional
value c must be packed in SCase2, contradicting the assumption that count = 0.

�

By Lemma 2, we do not need consider the case when none of SCase1,
SCase2, and SCase3 are empty and count = 0. The cases we must consider are
described below.

For simplicity and without loss of generality, in the sequel we assume that
none of the configurations computed by solving linear program (1) contain
any empty space, so the width of the base configuration of each configuration
C is equal to 1. Additionally, we assume that for some configuration C, if its
leftmost and rightmost rectangle types t1 and t2 are both in SCase1 ∪ SCase2,
then f1h1 < f2h2 where f1 and f2 are the fractional values of the fractional
rectangles of type t1 and t2 respectively and h1 and h2 are the corresponding
heights of the whole rectangles. Note that if the opposite is true the analysis
is very similar, so we omit it.

Let hi be the height of the rectangles corresponding to fractional value i,
for i = a, b, c, d, e, and f .
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Fig. 3: count = 1 and f1(i) + f2(i) ≤ 1 for all vertical sections si ∈ SCase2.

4.4 None of SCase1, SCase2, and SCase3 are empty,
count = 1, and f1(i) + f2(i) ≤ 1 for all vertical
sections si ∈ SCase2.

Lemma 3 If none of SCase1, SCase2, and SCase3 are empty, count = 1, and f1(i)+
f2(i) ≤ 1 for all vertical sections si ∈ SCase2, then there is an algorithm that produces

an integer packing of height at most 3
2 plus the value of the solution for linear program

(1).

Proof Our algorithm will produce two solutions and choose the one with shorter
height. For the first solution, pair C1 and C2 and re-shape, pack, and round rect-
angles as explained in Section 4.2 (see Figure 3a). The height increase in SCase1
and SCase2 caused by creating CA1 is at most h1 − aha − chc ≤ h1 − chc, where
h1 = max{ha, hb, hc, he} (note that CA1 re-uses the space that was occupied by the
fractional rectangles of fractional values a and c).

In SCase3, the height increase caused by rounding up the fractional rectangles
with fractional values b and d is at most (1−b)hb+(1−d)hd; hence the height increase
caused by pairing C1 and C2 is at most D1 = max{h1−chc, (1−b)hb+(1−d)hd}. The
height increase caused by rounding up the fractional rectangles in C3 with fractional
value f is at most (1 − f)hf (see Figure 3a). Therefore, the total height increase is
at most max{∆A,∆B}, where ∆A = h1 − chc + (1− f)hf ≤ 2− f − chc, as h1 ≤ 1

and hf ≤ 1 and ∆B = (1 − b)hb + (1 − d)hd + (1 − f)hf ≤ 3 − b − d − f < 3
2 as

hb ≤ 1, hd ≤ 1, and b+ d+ f > 3
2 by (2).

For the second solution, re-order the configurations so that fractional rectangles
with fractional value a appear in the bottom configuration, and fractional rectangles
with fractional value e appear in the top configuration, then pair C2 and C3 (note that
these are now the top two configurations) and re-shape, pack, and round rectangles
as explained in Section 4.2 (see Figure 3b). We only consider the case when f+c > 1
(see Figure 3b); the case when f + c ≤ 1 is similar.

The height increase caused by creating CA1 is at most h2−chc−ehe, where h2 =
max{ha, hb, hc, he}. In SCase2 and SCase3, the height increase caused by rounding
up the fractional rectangles with fractional values c, d, and f is at most max{(1 −
c)hc, (1−d)hd}+(1−f)hf ; hence the height increase caused by pairing C2 and C3 is
at most D2 = max{h2−chc−ehe,max{(1−c)hc, (1−d)hd}+(1−f)hf}. The height
increase caused by rounding up fractional rectangles in C1 with fractional value b
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is at most (1 − b)hb. Therefore, the total height increase is at most max{∆C ,∆D},
where ∆C = (1− b)hb + h2 − chc − ehe and ∆D = (1− b)hb + max{(1− c)hc, (1−
d)hd}+ (1− f)hf .

Selecting the better of the two solutions produces an increase in the height of the
solution by max{min{∆A,∆C},min{∆A,∆D},min{∆B ,∆C},min{∆B ,∆D}}.

� min{∆A,∆C}: ∆A = 2−f−chc and ∆C = (1−b)hb+max{hc, he}−chc−ehe.
Note that ∆A ≤ 2−f and since hb, hc, he ≤ 1 then ∆C ≤ (1− b) + (1− e) =
2−b−e. Since f+b > 1 as fractional rectangles with fractional values f and
b appear in SCase3 then either f > 1

2 or b > 1
2 and so min{∆A,∆C} ≤ 3

2 .
� min{∆A,∆D}: ∆A = 2− f − chc and ∆D = (1− b)hb + max{(1− c)hc, (1−
d)hd} + (1 − f)hf . Recall our assumption that f + c > 1 (the case when
f + c ≤ 1 is similar), therefore either f > 1

2 or c > 1
2 . If f > 1

2 then
∆A <

3
2−chc <

3
2 . If c > 1

2 then ∆D ≤ (1−b)+(1−f)+max{1−c, 1−d} =
2− b− f + max{1 - c, 1 - d}:

– If 1− c > 1− d then ∆D ≤ 3− b− f − c < 3− 1
2 − b− f <

3
2 as b+ f > 1.

– If 1− d > 1− c then ∆D ≤ 3− b− d− f ≤ 3
2 by (2).

Therefore, min{∆A,∆D} ≤ 3
2 .

� min{∆B ,∆C} ≤ 3
2 and min{∆B ,∆D} ≤ 3

2 because ∆B ≤ 3
2 .

�

Observe that in the first solution, depicted in Figure 3a, there might be a
fractional rectangle r in C1 that is vertically split by B2,3 such that one piece
of r is re-shaped and packed as explained in Section 4.2, while the other piece
is rounded up to the height of a rectangle of the same type as r. These pieces
are marked in Figure 3a. Note that the two pieces can be placed beside each
other to form a whole rectangle without further increasing the height of the
packing. Similarly the fractional rectangles in Figure 3b can be combined to
form whole rectangles without affecting the height of the packing. In the sequel
we will not explicitly explain how fractional rectangles that are vertically split
are combined to form whole rectangles, instead the figures will show how to
do this.

4.5 None of SCase1, SCase2, and SCase3 are empty,
count = 1, and f1(i) + f2(i) > 1 for at least one
vertical section si ∈ SCase2.

Lemma 4 If none of SCase1, SCase2, and SCase3 are empty and count = 1, then
C1’s rectangles cannot define B2,2, B2,3, or B3,3.

Proof Note that if C1’s rectangles defined B2,2, then the value of count would be 2
because rectangles in C1 with fractional value a would appear in SCase2 and since
the rectangles in C2 define B2,3 then rectangles with fractional value c would also
appear in SCase2. Similarly, it is not possible that C1’s rectangles define boundaries
B2,3 or B3,3. �
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Lemma 5 If none of SCase1, SCase2, and SCase3 are empty, count = 1, and f1(i)+
f2(i) > 1 for at least one si ∈ SCase2, then there is an algorithm that produces an

integer packing of height at most 3
2 plus the value of the solution for linear program

(1).

Proof By Lemma 4, C1’s rectangles cannot define B2,2, B2,3, or B3,3. Note that if
C1’s rectangles defined B1,1, then f1(i)+f2(i) ≤ 1 for all vertical sections si ∈ SCase2
since the rectangles in C2 define B2,3 and thus fractional rectangles with fractional
values b and c would appear within SCase1 and so b+c would be at most 1. Therefore,
the rectangles in C1 and C3 must create a coinciding boundary B1,2 so that b + c
could be larger than 1, as required by the Lemma.

Since b+c > 1, then b > 1
2 and/or c > 1

2 . If b > c, then re-order the configurations
so that fractional rectangles with fractional value b appear in the bottom configura-
tion. Pair C2 and C3 and re-shape, pack, and round rectangles as explained Section
4.2. The height increase caused by pairing C2 and C3 is at most 1: for sections si
where f1(i) + f2(i) ≤ 1 the height increase caused by creating CA1 is at most 1, and
for sections si where f1(i) +f2(i) > 1 the height increase caused by rounding up f1(i)
and f2(i) is also at most 1. The height increase caused by rounding up fractional

rectangles with fractional value b is at most 1
2 (see Figure 4a) so the total height

increase is at most 3
2 .

If c > b, then re-order the configurations so that fractional rectangles with frac-
tional value c appear in the bottom configuration, pair C1 and C3, and re-shape,
pack, and round rectangles as explained in Section 4.2. The height increase caused
by pairing C1 and C3 is at most 1 and the height increase caused by rounding up
fractional rectangles with fractional value c is at most 1

2 (see Figure 4b). �

C1

C2

C3

s1 

SCase1

s2 s3 s4 

SCase2 SCase3

emptya

empty

CA1 1

empty

e emptyempty

dc

f

empty empty empty

b

(a)

C2

C1

C3

s1 

SCase1

s2 s3 s4 

SCase2 SCase3

empty

a

empty

CA1 1

empty

e emptyempty

c

f

empty empty emptyb

d

(b)

Fig. 4: count = 1 and f1(i) + f2(i) > 1 for at least one vertical section si ∈
SCase2.
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4.6 None of SCase1, SCase2, and SCase3 are empty,
count = 2, and f1(i) + f2(i) ≤ 1 for all vertical
sections si ∈ SCase2.

Lemma 6 If none of SCase1, SCase2, and SCase3 are empty, count = 2, and f1(i)+
f2(i) ≤ 1 for all vertical sections si ∈ SCase2, then there is an algorithm that produces

an integer packing of height at most 3
2 plus the value of the solution for linear program

(1).

Proof Note that the rectangles in C1 cannot create B1,1 as otherwise count < 2.

� If (1−f)hf ≤ 1
2 then re-order the configurations so that fractional rectangles

with fractional value f appear in the bottom configuration. If (1−f)hf >
1
2 :

– If (1 − a)ha ≤ 1
2 re-order the configurations so that fractional rectangles

with fractional value a appear in the bottom configuration.
– If (1 − c)hc ≤ 1

2 re-order the configurations so that fractional rectangles
with fractional value c appear in the bottom configuration.

Pair the top two configurations, and re-shape, pack, and round fractional
rectangles as explained in Section 4.2. These solutions are very similar as
that in Figure 4a. The height increase caused by pairing the top two con-
figurations is at most 1. The height increase caused by rounding up the
fractional rectangles in the bottom configuration is at most 1

2 . To see this
note that if (1− f)hf >

1
2 then hf >

1
2 and f < 1

2 as hf ≤ 1; furthermore,
b > 1

2 and d > 1
2 since b + f > 1 and d + f > 1 (as fractional values b, d,

and f appear in SCase3). So the total height increase is at most 3
2 .

� If (1 − f)hf >
1
2 , (1 − c)hc > 1

2 , and (1 − a)ha >
1
2 , then ha >

1
2 , hc >

1
2 ,

and hf > 1
2 . Pair C1 and C2 and re-shape, pack, and round fractional

rectangles as explained in Section 4.2 (see Figure 5). The height increase
in SCase1 and SCase2 caused by creating CA1 is at most h1 − aha − chc,
where h1 = max{ha, hb, hc, he}. In SCase3, the height increase caused by
rounding up the fractional rectangles with fractional values b and d is at
most (1− b)hb + (1− d)hd; hence the height increase caused by pairing C1

and C2 is at most D1 = max{h1 − aha − chc, (1 − b)hb + (1 − d)hd}. The
height increase caused by rounding up the fractional rectangles in C3 with
fractional value f is at most (1− f)hf . Therefore, the total height increase
is at most max{∆A,∆B}, where:

– ∆A = h1 − aha − chc + (1 − f)hf = h1 + hf − (aha + chc + fhf ) ≤
2 − 1

2 (a + c + f) < 3
2 , as h1 ≤ 1, ha >

1
2 , hc >

1
2 , 1 ≥ hf > 1

2 , and
a+ c+ f > 1, and

– ∆B = (1 − b)hb + (1 − d)hd + (1 − f)hf ≤ (1 − b) + (1 − d) + (1 − f) =
3− b− d− f < 3

2 as hb ≤ 1, hd ≤ 1, hf ≤ 1, and b+ d+ f > 3
2 by (2).

�
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C3

C2

C1

s1 

SCase1

s2 s3 s4 

SCase2 SCase3

emptye

empty
CA1

a b emptyempty

dc

f

D1

(1 - f)hf

Fig. 5: count = 2, f1(i) + f2(i) ≤ 1 for all vertical sections si ∈ SCase2,
(1− f)hf >

1
2 , (1− c)hc > 1

2 , and (1− a)ha >
1
2 .

4.7 None of SCase1, SCase2, and SCase3 are empty,
count = 2, and f1(i) + f2(i) > 1 for at least one
vertical section si ∈ SCase2.

Lemma 7 If none of SCase1, SCase2, and SCase3 are empty, count = 2, and f1(i)+
f2(i) > 1 for at least one vertical section si ∈ SCase2, then there is an algorithm

that produces an integer packing of height at most 3
2 plus the value of the solution

for linear program (1).

Proof Note that if C1’s rectangles defined B2,3 or B3,3, then f1(i) + f2(i) ≤ 1 for
all vertical sections si ∈ SCase2 since the rectangles in C2 define B2,3 and therefore
rectangles with fractional values a and c would appear within SCase1 (so a+ c ≤ 1)
and they would be the only fractional values in SCase2∩(C1∪C2). Additionally, note
that C1’s rectangles cannot define B1,1 or B1,2, as otherwise count could not have
value 2. Therefore, C1’s rectangles must define boundary B2,2 so that f1(i)+f2(i) > 1
for at least one vertical section si ∈ SCase2 and b+c > 1, as required by the Lemma.

Similar to the analysis in the proof of Lemma 6, if (1−f)hf ≤ 1
2 , or if (1−f)hf >

1
2 and (1 − c)hc ≤ 1

2 or (1 − a)ha ≤ 1
2 , then we re-order the configurations so that

the fractional value f , c, or a appears in the bottom configuration, respectively. The
height increase caused by pairing the top two configurations is at most 1. The height
increase caused by rounding up fractional rectangles in the bottom configuration is
at most 1

2 , and so the total height increase is at most 3
2 .

Hence, we only need to consider the case when (1−f)hf >
1
2 , (1−c)hc > 1

2 , and

(1− a)ha >
1
2 . Note that then f < 1

2 , c < 1
2 , a < 1

2 , hc >
1
2 , ha >

1
2 , and b > 1

2 as
b+ c > 1. Consider the fractional values a, c, and f , and re-order the configurations
so that the two largest fractional values among them are in the bottom and middle
configurations. If a ≥ c ≥ f or c ≥ a ≥ f , then ensure that fractional value a appears
in the bottom configuration. If a ≥ f ≥ c, f ≥ a ≥ c, c ≥ f ≥ a, or f ≥ c ≥ a, then
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ensure that fractional value f appears in the bottom configuration. Pair the top two
configurations, and re-shape, pack, and round fractional rectangles as explained in
Section 4.2. We consider below just the case when a ≥ c ≥ f ; the other cases are
similar.

Observe that a + c > 2
3 as a + c + f > 1 (see Figure 6). The height increase in

SCase1 and SCase2 caused by creating CA1 is at most h1−chc−ehe ≤ h1−chc, where
h1 = max{ha, hc, he, hf}. In SCase3, the height increase caused by rounding up the
fractional rectangles with fractional values d and f is at most (1− d)hd + (1− f)hf .

Note that (1−a)ha > (1−b)hb, as b > 1
2 and so (1−b)hb ≤ 1

2 but (1−a)ha >
1
2 .

Thus the fractional rectangles with fractional value d (and the whole rectangles of the
same type beneath them in the middle configuration) can be shifted downwards into
the empty space above the fractional rectangles with fractional value b (see Figure
6). Hence, the height increase caused from pairing the top two configurations is at
most D1 = max{h1 − chc, (1− d)hd + (1− f)hf − ((1− a)ha − (1− b)hb)}.

The height increase caused by rounding up the fractional rectangles in the bottom
configuration with fractional value a is at most (1−a)ha. Therefore, the total height
increase is at most max{∆A,∆B}, where:

� ∆B = (1− d)hd + (1− f)hf − ((1−a)ha− (1− b)hb) + (1−a)ha ≤ (1− d) +
(1− f) + (1− b) = 3− b− d− f ≤ 3

2 by (2), as hb, hd, and hf are at most 1.
� ∆A = h1 − chc + (1− a)ha ≤ 2− a− chc as h1 ≤ 1 and ha ≤ 1. Since ∆A is

a decreasing function on a + c and a + c > 2
3 then an upper bound for the

value of ∆A can be obtained when a + c = 2
3 and so a = 2

3 − c, therefore
∆A ≤ 2− 2

3 + c− chc = 4
3 + c− chc < 4

3 + c− c
2(1−c) because (1− c)hc > 1

2 .

Then ∆A < 4
3 + c−2c2

2(1−c) . The right hand side of this inequality takes its

maximum value when c = 1−
√
2
2 and so ∆A <

4
3 + 3

2 −
√

2 = 17
6 −
√

2 < 3
2 .
�

4.8 Remaining Cases

In the previous section we considered the case when none of SCase1, SCase2,
or SCase3 was empty. We briefly discuss below the remaining cases:

� If SCase1 is not empty, but SCase2 and SCase3 are both empty, pair C1 and
C2 re-shape and pack all fractional rectangles in CA1 as explained in Section
4.2. Therefore we obtain a solution of height at most 1 plus the value of the
solution for linear program (1).

� If SCase2 is not empty, but SCase1 and SCase3 are both empty, then count > 0
and we can use Lemmas 3-7.

� If SCase3 is not empty, but SCase1 and SCase2 are both empty, round up all
fractional rectangles. Since f1(i) + f2(i) + f3(i) >

3
2 for every vertical section

si ∈ SCase3 then we obtain a solution of height at most 3
2 plus the value of

the solution for linear program (1).
� If both SCase1 and SCase2 are not empty, but SCase3 is empty, and count =

0, there must be only one vertical section si ∈ SCase2 as otherwise the
boundary B2,2 must exist, but that would mean that at least one fractional
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C1
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C3
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SCase2 SCase3
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e

empty

empty
D1
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Fig. 6: count = 2, f1(i) +f2(i) > 1 for at least one vertical section si ∈ SCase2,
(1− f)hf >

1
2 , (1− c)hc > 1

2 , (1− a)ha >
1
2 , and a ≥ c ≥ f .

C3

C2

C1

s1 

SCase1
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empty
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empty

a b emptyempty

dc

f empty

empty
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(a)

C3
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s1 

SCase1

s2 s3 s4 

SCase2

empty

CA1 1

a b emptyempty

c empty empty emptyd

e fempty empty empty

empty

(b)

Fig. 7: If S = SCase1∪SCase2 and count = 0, then there is exactly one vertical
section si ∈ SCase2. (a) The largest fraction is more than 1

2 , and (b) the largest
fraction is less than 1

2 .

rectangle with fractional value a or c must be within SCase2 and therefore
count would have value larger than zero.

– If the largest fractional value in the section si ∈ SCase2 is more than
1
2 , re-order the configurations so that the fractional rectangles with that
fractional value appear in the bottom configuration and then pair the top
two configurations, and re-shape, pack, and round fractional rectangles as
explained in Section 4.2 (see Figure 7a). The height increase caused by
creating CA1 is at most 1 and the height increase caused by rounding up
the fractional rectangles in the bottom configuration is at most 1

2 .
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– Otherwise, re-order the configurations such that for the section si ∈
SCase2 the fractional value in the top configuration in SCase2 is the
smallest, and the boundary defined by the rectangles in the bottom config-
uration does not occur to the left of the boundary defined by the rectangles
in the middle configuration. Pair the top two configurations and re-shape,
pack, and round fractional rectangles as explained in Section 4.2, then flip
the middle configuration upside down. Note that the rounded-up rectan-
gles in SCase2 in the bottom configuration can use the empty space left
behind by the fractional rectangles in the middle configuration (see Figure
7b).
The height increase caused by creating CA1 is at most 1. Note that since
the middle configuration is flipped upside down, the empty space leftover
after removing the fractional rectangles from the middle configuration can
be used by the rounded up rectangles in the bottom configuration; there-
fore, the height increase caused by rounding up the fractional rectangles
in the bottom configuration is at most 1

2 , as the fractional values the mid-
dle and bottom configurations sum to more than 1

2 , so the total height
increase is at most 3

2 .

� If both SCase1 and SCase2 are not empty, but SCase3 is empty, and count > 0,
then we can use Lemmas 3-7.

� If both SCase1 and SCase3 are not empty, but SCase2 is empty, and count =
0, then re-order the configurations so that the fractional rectangles in the
bottom configuration are the largest of fractional values b, d, and f . Note
that fractional values a and c are not within SCase3, as count = 0 , and
the rectangles in the bottom configuration create B1,3, so fractional value e
is not within SCase3 either. Pair the top two configurations, and re-shape,
pack, and round fractional rectangles as explained in Section 4.2. The height
increase from pairing the top two configurations is at most 1, and the height
increase from rounding up the fractional rectangles in SCase3 in the bottom
configuration is at most 1

2 , so the total height increase is at most 3
2 .

� If both SCase1 and SCase3 are not empty, but SCase2 is empty, and count > 0,
then we can use Lemmas 3-7.

� If both SCase2 and SCase3 are not empty, but SCase1 is empty, then count =
2, and we can use Lemmas 3-7.

Theorem 1 If K = 3 and the fractional solution computed by solving linear program
(1) has exactly three configurations, and if each of those configurations has exactly
two different rectangle types in SUncommon, then there is an algorithm that produces
an integer packing of height at most 3

2 plus the value of the solution for linear program
(1).
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5 Algorithm for Three Configurations and
Three Rectangle Types in a Configuration

In this section we consider the case when the fractional solution obtained
from solving linear program (1) has three configurations, one configuration
has exactly three rectangle types, one configuration has exactly two rectangle
types, and one configuration has exactly one rectangle type. The algorithms
described in this section are modifications of the algorithms described in the
previous section to account for the existence of a configuration with three
rectangle types. Note that only a single configuration in SUncommon can pack
three rectangle types, as otherwise at least one of the rectangle types would
be common to all three configurations.

5.1 Ordering the Configurations

We order the configurations as follows:

� The top configuration contains only one rectangle type.
� The rectangles in the middle configuration define B2,3, if it exists. Note that

the rectangles in the middle configuration can define both B1,2 and B2,3 if
it contains three rectangle types.

After ordering the configurations as above, let the configuration packed at
the top be C1, the one in the middle be C2, and the one at the bottom be C3.

Let a be the fractional value of the fractional rectangles in C1. If C2 contains
three rectangle types, then let b, c, and d be the fractional values in C2 and
let e and f be the fractional rectangles in C3. Otherwise, if C2 contains two
rectangle types, then let b and c be the fractional values in C2 and let d, e,
and f be the fractional rectangles in C3.

Initialize variable count to 0. Increase count in the following way:

� If any fractional rectangles with fractional value a are packed within any
vertical section of SCase2 or SCase3, increase the value of count by one.

� If any fractional rectangles with fractional value b are packed within any
vertical section of SCase2 or SCase3, increase the value of count by one.

� If C2 contains three rectangle types:

– If any fractional rectangles with fractional value e are packed within any
vertical section of SCase2 or SCase3, increase the value of count by one.

� If C2 contains two rectangle types:

– If any fractional rectangles with fractional value d are packed within any
vertical section of SCase2 or SCase3, increase the value of count by one.

We provide different algorithms for rounding fractional rectangles into
whole ones based on which of SCase1, SCase2, and SCase3 are not empty and
what the value of count is. Note that because C1 has only one rectangle type,
if none of SCase1, SCase2, and SCase3 are empty, then count > 0.
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5.2 None of SCase1, SCase2, and SCase3 are empty, and
count = 1.

C3

C2

C1

s1 

SCase1

s2 s3 s4 

SCase2 SCase3

empty

CA1 1

e

empty emptyc

fempty

d

a

emptyb

empty

Fig. 8: None of SCase1, SCase2, and SCase3 are empty, count = 1, f1(i)+f2(i) ≤
1 for all vertical sections si ∈ SCase2, and (1− a)ha >

1
2 so f > 1

2 .

Lemma 8 If none of SCase1, SCase2, and SCase3 are empty, count = 1 and f1(i) +
f2(i) ≤ 1 for all vertical sections si ∈ SCase2, then there is an algorithm that produces

an integer packing of height at most 3
2 plus the value of the solution for linear program

(1).

Proof Since the rectangles in C2 define B2,3, if C2 had only two rectangle types then
count > 1; hence C2 must have three rectangle types. So, in C2 fractional rectangles
with fractional value b are in SCase1 (but not SCase2, as otherwise count > 1),
fractional rectangles with fractional value c are in SCase2 (but not SCase3, as these
rectangles define B2,3), and only the fractional rectangles with fractional value d are
in SCase3. In C3 fractional value e cannot be within SCase2 or SCase3, as otherwise
count > 1.

If (1 − a)ha ≤ 1
2 then re-order the configurations so that fractional rectangles

with fractional value a appear in the bottom configuration; otherwise (1 − a)ha >
1
2 , so a < 1

2 and f > 1
2 because a + f > 1 as both fractional values appear in

SCase3. Pair the top two configurations, and re-shape, pack, and round fractional
rectangles as explained in Section 4.2. The height increase caused by pairing the top
two configurations is at most 1. The height increase caused by rounding up fractional
rectangles with fractional value a (if (1 − a)ha ≤ 1

2 ) or f (if (1 − a)ha >
1
2 ) is at

most 1
2 so the total height increase is at most 3

2 . �
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5.3 None of SCase1, SCase2, and SCase3 are empty,
count = 2, and f1(i) + f2(i) ≤ 1 for all vertical
sections si ∈ SCase2.

C3

C2

C1

s1 

SCase1

s2 s3 s4 

SCase2 SCase3

empty

CA1 1

e

empty

a

emptyb
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Fig. 9: S = SCase1 ∪ SCase2 ∪ SCase3, count = 2, and f1(i) + f2(i) ≤ 1 for
all vertical sections si ∈ SCase2. (a) C2’s leftmost fractional value is packed
within SCase2 and (1− a)ha >

1
2 . (b) C3’s leftmost fractional value is packed

within SCase2 and (1 − a)ha >
1
2 , (1 − e)he < 1

2 , and f > 1
2 . (c) C2 has only

two rectangle types and (1− a)ha >
1
2 , (1− e)he < 1

2 , and f > 1
2 .

Lemma 9 If none of SCase1, SCase2, and SCase3 are empty, count = 2 and f1(i) +
f2(i) ≤ 1 for all vertical sections si ∈ SCase2, then there is an algorithm that produces

an integer packing of height at most 3
2 plus the value of the solution for linear program

(1).

Proof First assume that C2 has three rectangle types and C3 has two rectangle types.
We need to consider two cases.

� C2’s leftmost fraction is packed within SCase2. Therefore, C2 cannot cre-
ate either B1,1 or B1,2, C3 must define B1,2, and fractional value e does
not appear in SCase2 or SCase3 (see Figure 9a). We process the fractional
rectangles using the same approach as in Lemma 8.



Springer Nature 2021 LATEX template

High Multiplicity Strip Packing with Three Rectangle Types 21

� C3’s leftmost fraction is packed within SCase2. Therefore, C2 must define
B1,2 and C3 could create either B2,2, B2,3, or B3,3 (see Figure 9b). If
(1 − a)ha ≤ 1

2 then re-order the configurations so that fractional rectan-
gles with fractional value a appear in the bottom configuration. Otherwise,
if (1 − a)ha >

1
2 and (1 − c)hc ≤ 1

2 (or (1 − e)he ≤ 1
2 ), then re-order the

configurations so that fractional rectangles with fractional value c (or e)
appear in the bottom configuration. Pair the top two configurations, and
re-shape, pack, and round fractional rectangles as explained in Section 4.2.
The height increase caused by pairing the top two configurations is at most
1. The height increase caused by rounding up fractional rectangles in the
bottom configuration is at most 1

2 . To see this note that if (1 − a)ha >
1
2

then ha >
1
2 and a < 1

2 as ha ≤ 1; therefore, when this happens d > 1
2 and

f > 1
2 since a+ d > 1 and a+ f > 1 (as fractional values a, d, and f appear

in SCase3). So the total height increase is at most 3
2 . Hence, we only need

to consider the case when (1− a)ha >
1
2 , (1− c)hc > 1

2 , and (1− e)he > 1
2 ,

which can be addressed using the approach from the proof of Lemma 7 and
it increases the height of the packing by at most 3

2 .

Assume now that C2 has two rectangle types and C3 has three rectangle types.
Note that fractional rectangles in C2 with fractional value b are packed within SCase2,
because the rectangles in C2 define boundary B2,3, and so C3 must create B1,2 (see
Figure 9c).

Again, similar to the analysis above, if (1 − a)ha ≤ 1
2 then re-order the config-

urations so that fractional rectangles with fractional value a appear in the bottom
configuration. Otherwise, if (1−a)ha >

1
2 and (1−b)hb ≤ 1

2 (or (1−e)he ≤ 1
2 ), then

re-order the configurations so that fractional rectangles with fractional value b (or e)
appear in the bottom configuration. Pair the top two configurations, and re-shape,
pack, and round fractional rectangles as explained in Section 4.2. The height increase
caused by pairing the top two configurations is at most 1. The height increase caused
by rounding up fractional rectangles in the bottom configuration is at most 1

2 . To

see this note that if (1 − a)ha >
1
2 then ha >

1
2 and a < 1

2 as ha ≤ 1; therefore,

when this happens c > 1
2 and f > 1

2 since a + c > 1 and a + f > 1 (as fractional

values a, c, and f appear in SCase3). So the total height increase is at most 3
2 .

Finally, when (1−a)ha >
1
2 , (1−b)hb > 1

2 , and (1−e)he > 1
2 , using the approach

from the proof of Lemma 7 increases the height of the packing by at most 3
2 . �

5.4 None of SCase1, SCase2, and SCase3 are empty,
count = 2, and f1(i) + f2(i) > 1 for at least one
vertical section si ∈ SCase2.

Lemma 10 If count = 2, and f1(i) + f2(i) > 1 for at least one vertical section
si ∈ SCase2, then there is an algorithm that produces an integer packing of height at
most 3

2 plus the value of the solution for linear program (1).

Proof Note that if C2 has two rectangle types then f1(i) + f2(i) ≤ 1 for all vertical
sections si ∈ SCase2 since the rectangles in C2 define boundary B2,3 and so fractional
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values a and b would appear within SCase1 and SCase2 and so a + b would be at
most 1; therefore, C2 must have three rectangle types.

Additionally, note that since C2 has three rectangle types, its rectangles must
also define B1,2 or B2,2, as otherwise f1(i) + f2(i) ≤ 1 for all sections si ∈ SCase2.
The rectangles in C2 cannot define B1,1 as then the rectangles in C3 would have to
define B1,2 and so count would have value 1.

We first consider when the rectangles in C2 define B1,2, which means that the
rectangles in C3 define either B2,2, B2,3, or B3,3, all of which are handled the same
way.

Since a+ c > 1, then a > 1
2 and/or c > 1

2 .

� If a > 1
2 then re-order the configurations so that fractional rectangles with

fractional value a appear in the bottom configuration, pair the top two con-
figurations, and re-shape, pack, and round fractional rectangles as explained
in Section 4.2. The height increase caused by pairing the top two configu-
rations is at most 1. The height increase caused by rounding up fractional
rectangles with fractional value a is at most 1

2 so the total height increase
is at most 3

2 .
� If a < 1

2 then c > 1
2 ; also d > 1

2 , and f > 1
2 as fractional values a, d, and f

appear in SCase3. Re-order the configurations so that fractional rectangles
with fractional value c appear in the bottom configuration, pair the top
two configurations, and re-shape, pack, and round fractional rectangles as
explained in Section 4.2. The height increase caused by pairing the top
two configurations is at most 1. The height increase caused by rounding up
fractional rectangles with fractional values c and d is at most 1

2 so the total
height increase is at most 3

2 .

For the case when the rectangles in C2 define B2,2, which means that the rect-
angles in C3 define B1,2, we use the same approach as in Lemma 8. �

5.5 Remaining Cases

When only SCase1 is not empty, or when only SCase3 is not empty, we can
use the algorithms described in Section 4 for the same cases. Note that when
only SCase2 or SCase3 are empty, then count > 0 since there is a configuration
containing a single rectangle type, and hence the algorithms from Lemmas 8-
10 can be used. When only SCase2 is not empty or when only SCase1 is empty,
then count > 0 and the algorithms from Lemmas 8-10 can be used.

Theorem 2 If K = 3 and the fractional solution computed by solving linear program
(1) has exactly three configurations, one configuration has three rectangle types, one
configuration has two rectangle types, and one configuration has only one rectangle
type, then there is an algorithm that produces an integer packing of height at most 3

2
plus the value of the solution for linear program (1).
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5.6 Fewer Than Three Configurations

We have described how to round a fractional packing with exactly three config-
urations computed by solving linear program (1). When the fractional packing
has fewer than three configurations we need to group the vertical sections
in a different manner. When there are only two configurations, a vertical
section si is classified as SCase1 if f1(i) + f2(i) ≤ 1 and classified as SCase2 if
f1(i) + f2(i) > 1. Pair the two configurations and re-shape, pack, and round
fractional rectangles as explained in Section 4.2. Note that the height increase
caused by pairing the two configurations is at most 1.

When there is only one configuration, all fractional rectangles are rounded
up for a height increase of the packing of at most 1.

5.7 Differing Number of Rectangle Types in Each
Configuration

We have described how to round SUncommon when each configuration has
exactly two rectangle types, or when one configuration has three rectangle
types, one configuration has two rectangle types, and one configuration has
only one rectangle type. In all of the other remaining possible combinations
of the number of rectangle types in each configuration there is at least one
configuration with only a single rectangle type, and so the approach used in
Sections 5.1-5.6 can be applied for all of these remaining cases.

6 Polynomial Time Implementation

Recall that the input to 2DHMSPP is represented as a list of 3K numbers, not
a list specifying the dimensions of n rectangles; therefore, any algorithm that
specifies individual locations of rectangles in a solution for 2DHMSPP will not
run in polynomial time.

We represent a configuration as a list of O(K ) numbers: for 1 ≤ i ≤ K we
specify the rectangle type Ti, the number of rectangles of type Ti packed side-
by-side, and the number of rectangles of type Ti packed on top of each other
(note that this last number might not be integer).

Since there are at most K configurations, and we create at most one addi-
tional configuration by creating CA1 during the rounding process, then at most
O(K 2 ) numbers are needed to specify the packing in SUncommon. Similarly,
the packing in SCommon is specified using at most O(K ) numbers, for a total
of O(K 2 ) numbers to specify the entire packing.

The number of rectangles of type Ti that are packed side-by-side in
SCommon is equal to the minimum of the number of rectangles of type Ti that
are packed in each of C1, C2, and C3. The number of rectangles of type Ti that
are packed vertically in SCommon is equal to the rounded up sum of the num-
ber of rectangles of type Ti that are packed one-on-top of the other in each of
C1, C2, and C3. Therefore, finding the number of rectangles of each type that
belong in SCommon requires O(K 2 ) operations.
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Processing SCommon requires O(K ) operations as for 1 ≤ i ≤ K our algo-
rithm only needs to round up the fractional values for each rectangle type Ti.
Sorting the rectangles in each configuration in SUncommon by their fractional
values requires O(K 2 ) operations.

Ordering the configurations as specified in Sections 4 and 5 requires O(K)
operations, computing the value of the count variable requires O(K) oper-
ations, and checking which of the cases specified in the lemmas of Sections
4 and 5 are present in the fractional packing requires O(K) operations. Re-
shaping, packing, and rounding fractional rectangles as described in Section 4.2
requires O(K 2 ) operations. Finally, packing leftover vertically split fractional
rectangles as shown in the figures requires O(K) operations.

Note that the above analysis holds regardless of how many rectangle types
are in each configuration of SUncommon.

Theorem 3 There is a polynomial time algorithm for 2DHMSPP with three
rectangle types that computes solutions of value at most OPT + 3

2 + ε for ε > 0.

Proof As shown in Section 2, an optimal fractional solution to 2DFSPP can be
computed in polynomial time. Our algorithm transforms fractional packings obtained
by solving linear program (1) into integer packings with height of at most 3

2 + ε plus
the height of the corresponding fractional packing, where ε is a positive constant.
Finally, as shown above our algorithm can be implemented in polynomial time. �

7 4-Type Algorithm

When K = 4 a basic feasible solution for linear program (1) consists of at most
four configurations. Our algorithm for this case performs the same four steps
as for the case when K = 3.

When there are only one or two configurations, the fractional rectangles
can be rounded as described in Section 5.6. Note that when K = 4 but there
are only three configurations in the fractional solution of linear program (1),
we cannot use our 3-type algorithm described above, as that algorithm takes
advantage of where the at most three case boundaries Bi,j , i 6= j are located,
but when K = 4 there can be up to eight boundaries, and these are not
accounted for in the algorithms we described above. Therefore, when K =
4 but there are three configurations, we pair the top two configurations as
described in Section 4.2 and round up the fractional rectangles in the bottom
configuration to produce a packing of height at most 2 plus the value of the
solution for linear program (1). In the sequel we only consider the case where
the solution of linear program (1) has 4 configurations.

7.1 Grouping Vertical Sections

Recall that within a vertical section si, each configuration has a single rectangle
type. Let i be the smallest section index for which the sum of the smallest
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three fractions in section si is more than 1, if such a section exists; otherwise,
we set i = 0. We order the configurations so that f1(i) ≤ f2(i) ≤ f3(i) ≤ f4(i),
where f1(i), f2(i), f3(i), and f4(i) represent the fractional values of the fractional
rectangles packed in si of C1, C2, C3, and C4, respectively.

We classify the vertical sections si ∈ SUncommon into 4 cases, depending
on the four fractional values f1(i), f2(i), f3(i), and f4(i) as follows:

� SCase1 includes all sections si such that f1(i) + f2(i) + f3(i) + f4(i) ≤ 1.
� SCase2 includes all sections si such that f1(i) + f2(i) + f3(i) + f4(i) > 1 and
f1(i) + f2(i) + f3(i) ≤ 1.

� SCase3 includes all sections si such that f1(i) + f2(i) + f3(i) > 1 and f1(i) +
f2(i) ≤ 1.

� SCase4 includes all sections si such that f1(i) + f2(i) > 1.

If no section si exists for which the sum of the smallest three fractions is
more than 1, then cases SCase3 and SCase4 will be empty.

C4

C3

C2

s1 s3 

C1

SCase1 

CA1

SCase3 

s2 

SCase2 

s4

SCase4

emptyempty

empty

empty empty empty

empty empty empty

Fig. 10: When K = 4 and the fractional packing has exactly four configura-
tions, our algorithm partitions the packing into at most 4 cases.

7.2 Case1: f1(i) + f2(i) + f3(i) + f4(i) ≤ 1

For every section si ∈ SCase1, we remove the fractional rectangles in C1,
C2, C3, and C4 (see Figure 10), including the parts rCase1 for vertically split
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fractional rectangles. We re-shape the fractional rectangles so that they have
the full height of a rectangle of the same type but only a fraction of its width,
and then we pack them side-by-side in CA1: to create CA1 all rectangles in C1

are shifted upwards, including rectangles in SCase2, SCase3, and SCase4, until
there is empty space of height 1 between C1 and C2 in section si. After shifting
the rectangles the tops of the topmost rectangles in C1 must lie on a common
line.

The creation of CA1 increases the height of the packing by at most 1.

7.3 Case2: f1(i) + f2(i) + f3(i) + f4(i) > 1 and
f1(i) + f2(i) + f3(i) ≤ 1

For every section si ∈ SCase2, we remove the fractional rectangles in C1, C2,
and C3 (see Figure 10), including the parts rCase2 for vertically split fractional
rectangles. We re-shape the fractional rectangles so that they have the full
height of a rectangle of the same type but only a fraction of its width, and then
we pack them side-by-side in CA1 as described above. Fractional rectangles in
C4 are rounded up.

The creation of CA1 and rounding fractional rectangles in C4 increases the
height of the packing by at most 2.

7.4 Case3: f1(i) + f2(i) + f3(i) > 1 and f1(i) + f2(i) ≤ 1

For every section si ∈ SCase3, we remove the fractional rectangles in C1 and
C2 (see Figure 10), including the parts rCase3 for vertically split fractional
rectangles. We re-shape the fractional rectangles so that they have the full
height of a rectangle of the same type but only a fraction of its width, and then
we pack them side-by-side in CA1 as described above. Fractional rectangles in
C3 and C4 are rounded up.

Note that we ordered the configurations based on the fractional values of
the fractional rectangles in the leftmost section si of SCase3, so f1(i) + f2(i) +
f3(i) > 1 and f1(i) ≤ f2(i) ≤ f3(i) ≤ f4(i). Hence, f4(i) ≥ f3(i) >

1
3 ; therefore,

rounding up the fractional rectangles in C3 and C4 increases the height of
the packing by at most 4

3 , and when including the height increase caused by
creating CA1 the total height increase for this case is at most 7

3 .

7.5 Case4: f1(i) + f2(i) > 1

For every section si ∈ SCase4 the fractional rectangles in C1 and C2 are
rounded up, increasing the height of the packing by at most 1 (see Figure 10).
Additionally, the fractional rectangles in C3 and C4 are rounded up, and by the
same reasoning shown for SCase3, the height increase is at most 4

3 . Therefore,
the height increase for this case is at most 7

3 .

Theorem 4 If K = 4 there is an algorithm that produces an integer packing of
height at most 7

3 plus the value of the solution for linear program (1).



Springer Nature 2021 LATEX template

High Multiplicity Strip Packing with Three Rectangle Types 27

8 K-Type Algorithm

Our algorithm for the case when K > 4 also performs four steps. The first two
steps are the same as the cases when K = 3 and K = 4. However, we per-
form one additional pre-processing step: if there are any rectangle types whose
widths are greater than half the width of the strip, we place these rectangles
leftmost within their configurations. Additionally, we order the configurations
so that configurations containing these wide rectangles are placed at the bot-
tom of the packing so that two configurations containing wide rectangles of
the same type are put in adjacent positions. Observe that this ensures that
wide rectangles are whole (see Figure 11).
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Fig. 11: Configurations with wide rectangle types are adjacent and near the
bottom.

8.1 Pairing Configurations

If there are an odd number of configurations, let C0 be the configuration at the
top of the packing, and let each subsequently lower configuration be C1, C2, ...,
CK−1, respectively. Otherwise, if there are an even number of configurations,
let them be C1, C2, ..., CK , respectively, from top to bottom. Pair configu-
rations C2i−1 and C2i for i = 1, 2, ..., bK2 c. Add a region Rj,j+1 of height 1
between each pair of configurations Cj and Cj+1, shifting rectangles upwards
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as necessary, but ensure that the rectangles whose widths are greater than half
the width of the strip still remain at the bottom of the packing (see Figure 12).
If there is an odd number of configurations, the final configuration (topmost)
will simply have all of its fractional rectangles rounded up.
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R3,4

R5,6

R7,8

Fig. 12: The K configurations are stacked; if there are an odd number of
configurations, the topmost configuration is rounded up instead of paired. After
creating the regions Rj,j+1, the rectangles whose widths are greater than half
the width of the strip are again grouped at the bottom of the configuration.

For every paired configurations Cj and Cj+1, a vertical section si is classi-
fied as SCase1 if fj(i) + fj+1(i) ≤ 1 and classified as SCase2 if fj(i) + fj+1(i) >
1.

Note that since rectangle types whose widths are greater than half the
width of the strip were packed together at the bottom of the packing and are
already whole, these rectangles are not considered for the remainder of this
section.

8.2 Processing Fractional Rectangles

Consider paired configurations Cj and Cj+1. For any vertically split fractional
rectangle r ∈ SCase1 ∩ SCase2, put the fractional piece rCase2 of r located in
SCase2 into a set F . Round up the remaining fractional rectangles contained
in SCase2.
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Add to the set F all the fractional rectangles from each vertical section si ∈
SCase1. Using fractional rectangles from F , form as many whole rectangles as
possible. Note that all fractional rectangles in SCommon and SCase2 (excluding
the pieces rCase2) are rounded up and therefore represent an integer number
of whole rectangles of each type. Since there was an integer number of whole
rectangles given as input to 2DHMSPP, then the fractional rectangles in F
must yield an integer number of whole rectangles of each type. Therefore, any
leftover fractional rectangles in F must have been used to round up other
rectangles and can be discarded.

8.3 Packing Rectangles into the Regions Rj,j+1

Consider one by one the regions Rj,j+1. Pack the rectangles from F one by one
into Rj,j+1 until the next rectangle r does not fit. Split r and pack in Rj,j+1

the largest fraction of r that fits; the other piece of r is put back in F . Note
that either Rj,j+1 is completely full (width-wise) or the set F is empty. If F
is not empty, continue packing rectangles from F starting with the fractional
piece of r, if any, into the remaining regions in the same manner. Note that
the rectangles from F must fit within these regions as we did not leave empty
space (width-wise) in any region and the total width of the rectangles in F
was at most the total width of all the regions combined.

Lemma 11 After packing the whole rectangles from F into the regions Rj,j+1 as

described above, at most bK2 c − 1 rectangles were split.

Proof When rectangles from F are packed into the first region Rj,j+1, at most one
fractional rectangle is leftover (the final rectangle that did not fit in the region). This
fractional rectangle combines with the fractional rectangle packed at the beginning of
the next region to form a whole rectangle. Combining the fractional rectangle located
at the end of a region with the fractional rectangle located at the beginning of the
next region accounts for bK2 c − 1 whole rectangles, as the final region will only have
a fractional rectangle at the beginning of the region and not at the end of it. �

8.4 Packing the Split Rectangles

We create additional regions R1, R2, ..., Rb 14Kc at the top of the packing of
width equal to the width of the strip to pack the rectangles that were split
(see Figure 13). These regions have width 1, the same as the rectangular strip,
instead of having just the width of SUncommon. Since the height of SCommon is
increased by at most 1, then as long as K > 2 these regions are located above
SCommon. Note that SCommon could be empty, so that the width of SUncommon
is equal to the width of the full strip.

Lemma 12 The bK2 c−1 split rectangles can be packed using at most bK4 c additional
regions of height 1.
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Fig. 13: The configurations have been paired, the fractional rectangles have
been processed, and the split rectangles have been made whole and packed in
regions placed at the top of the packing.

Proof Note that none of the split rectangles are wide, hence we can pack at least
two of these split rectangles into each region. Since there are fewer than bK2 c whole

rectangles, packing them at least two to a region will use at most bK4 c additional
regions. �

Note that ifK is even, then the height increase of SUncommon is at most bK2 c
from the regions created between each pair of configurations and an additional
bK4 c from the final regions added to the top of the packing. If K is odd, then

the height increase of SUncommon is at most bK2 c+ bK4 c+ 1, where the term 1
is from rounding up the un-paired configuration.

Theorem 5 If K > 3 then there is an algorithm that produces an integer packing of
height at most OPT + b 34Kc+1 plus the value of the solution for linear program (1).

9 Experimental Results

We compared our rectangle packing algorithm for the case when the input
contains three types of rectangles with the fractional packings produced by
solving linear program (1). We implemented our algorithm for 3 rectangle
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types using Java. The commercial integer and linear program solver Cplex
12.7, configured using default settings, was used to compute optimal fractional
solutions. For each test instance we pre-computed the list of possible base
configurations to provide to the linear program.

Our algorithm for three rectangle types produces integer packings of height
at most 3

2hmax+ε plus the height of the fractional packing where ε is a positive
constant, but as we show, its experimental performance is much better than
its theoretical upper bound.

9.1 Input Data

We used randomly generated sets of rectangles of 3 types to evaluate our
algorithm. Note that the running time of our algorithm depends on K, so the
number of rectangles in the input does not have much effect on the running
time of the algorithm. For each rectangle type, we randomly generate a width,
a height, and a multiplicity, but we performed different tests changing the
intervals over which we selected the random values. The width and height of
the rectangles were always rounded to two decimal places. For every test case
we generated one thousand trials.

The structure of the fractional packing impacts how well our algorithm
performs. When all of the heights of the fractional rectangles are nearly the
full height of their corresponding rectangle types, our algorithm simply rounds
them up and computes near-optimum solutions. In contrast, when some of the
heights of the fractional rectangles are much smaller than the heights of their
corresponding rectangle types, our algorithm needs to apply a combination of
rounding techniques. Therefore, when analyzing the results, we divide the test
cases into groups based on the structure of the fractional packing.

9.2 Test Cases

We studied the impact that rectangle type width has on the performance of our
algorithm. For i = 1, 2, ..., 10, we generated packings where the upper bound
on the randomly generated widths was 1

i . For example, when i = 5 the widths
of the rectangle types were randomly generated from the interval from 0.01 to
0.20. The running time of our algorithm quickly increases when we decrease
the upper bound for the rectangle widths because the need to pre-compute
the base configurations, so we limited the maximum value of i to be 10 for the
majority of our test caes. We also performed a smaller number of experiments
where the widths of the rectangle types were randomly generated from the
interval 0.01 to 0.05.

We studied the impact that rectangle type height has on the performance
of our algorithm. For each value of i noted above, we chose height intervals of
size 0.10, 0.25, 0.50, and 1. The minimum height of a rectangle type was 0.01.
We include the following height intervals:

� 0.9− 0.1j to 1− 0.1j for j = 0, 1, ..., 9.
� 0.75− 0.25j to 1− 0.25j for j = 0, 1, 2, 3.
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� 0.50− 0.50j to 1− 0.50j for j = 0, 1.
� 0.01 to 1.

We summarize the results below.

9.3 Results

Fig. 14: Average height increase with respect to optimal fractional packing.
Each data line represents a different value used for i when selecting the rectan-
gle widths and the x-axis shows the value used for j when selecting the height
from the upper bound interval 1− 0.1j and the lower bound 0.9− 0.1j. From
left to right the chart shows taller to shorter rectangles, and from top to bot-
tom the series of lines show narrower to wider rectangles.

In this section we present only a sample of our experimental results, but the
observations that we make in this section will cover all of our experiments 1.

Figure 14 shows how the widths and heights of the rectangle types impact
the height of the packing computed by our algorithm. On the x-axis, each
label represents the value of j used for that test case, and the height was
randomly generated using the interval from 0.9 − 0.1j to 1 − 0.1j. On the y-
axis, each label represents the mean of the difference between the height of the

1The complete results are available at www.csd.uwo.ca/∼ablochha/2DHMSPP Journal
RawData.pdf

www.csd.uwo.ca/~ablochha/2DHMSPP_Journal_RawData.pdf
www.csd.uwo.ca/~ablochha/2DHMSPP_Journal_RawData.pdf
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Test Case Description Trials Avg Min Max

1 Configurations have 3, 2, and 1 rectangle types 163 0.913 0.48 1.3

2 Configurations have 3, 1, and 1 rectangle types 41 0.834 0.48 1.16

3 Configurations have 2, 2, and 2 rectangle types 389 0.941 0.34 1.38

4 Configurations have 2, 2, and 1 rectangle types 326 0.877 0.19 1.35

5 Configurations have 2, 1, and 1 rectangle types 71 0.828 0.44 1.26

6 Configurations have 1, 1, and 1 rectangle types 10 0.718 0.15 0.98

7 Our Algorithm Total 1000 0.901 0.15 1.38

8 Simple Algorithm Total 1000 2.041 0.65 2.9

Table 1: One thousand trials. Widths are between 0.01 and 0.05, heights are
between 0.90 and 1. The results are separated into categories depending on
how many different rectangle types appear in each configuration, and within
these categories the mean average height increase, minimum height increase,
and maximum height increase is listed with respect to the height of an optimal
fractional packing. Note that in all 1000 trials the fractional packing contained
three configurations.

packing computed by our algorithm and the height of the fractional packing
obtained by solving linear program (1); the mean is taken over the thousand
tests performed for each value of i. Each individual line on the figure represents
the change in value of j for a particular value of i (recall that the width of
the rectangles was randomly generated using the interval from 0.01 to 1

i ). So,
looking at the chart from left to right shows results of our test cases of taller
to shorter rectangles, and looking at the series of lines from top to bottom
shows results of our test cases of narrower to wider rectangles.

Rectangle Heights. The height increase in a packing caused by rounding
up a fractional rectangle depends on the height of the rectangle type (see Figure
14). Instances generated using shorter rectangle types resulted in our algorithm
producing solutions that were closer to the optimal fractional solutions. The
correlation between the height of the rectangles and the height increase of the
packing was observed in each of our tests cases. Note that if the heights of all
the rectangle types are the same, then the fractional values for each fractional
rectangle will also be the same (see the full results), which leads to a simpler
problem.

Rectangle Widths. Our results do not include the trivial case when all
rectangle types have widths larger than 1

2 ; however, we did consider cases when
some of the rectangle types have widths larger than 1

2 . Within a particular
height interval, the instances that contained rectangles wider than 1

2 have the
lowest height increase with respect to the optimal fractional packing. To see
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this, observe in Figure 14 the data points corresponding to j = 1 on the x-
axis; the bottommost line represents the results where i = 1 and the maximum
rectangle width was 1, and each line above the blue line represents a larger and
larger value of i. Our results show that for many of the fractional packings that
include one or more rectangle types wider than 1

2 each of the configurations
contain a single rectangle type, SCase2 and SCase3 are both empty, or they have
fewer than three configurations (see the full results). Each of these situations
are simple to solve and most of their solutions increase the height by less than
1.

As we reduced the maximum width allowed for each rectangle type, the
solutions computed by our algorithm had heights that were further away from
the height of an optimal fractional packing. Note that in the full results you can
see that the fraction of the instances that had three configurations increased
when we reduced the maximum width (recall that the theoretical upper bound
on the height increase is worse for rounding three configurations). For the
instances where the maximum rectangle width was 1

10 , the average height
increase of our algorithm nearly reached its maximum for all of our test cases
(nearly 0.9 more than the height of an optimal fractional packing).

To get instances that pushed our algorithm towards its theoretical upper
bound, we generated inputs that contained rectangle types that are tall and
narrow. In Table 1 we show results for a test case where rectangle widths were
randomly chosen from the interval 0.01 to 0.05. Under the column labeled
”Test Case” we include a number so that we can refer to it easliy, and under
the column labeled ”Description” we give a description of the data that is
included for that test case. For example, test case 1 includes all of the trials (for
width between 0.01 and 0.05 and height between 0.90 and 1) where there was a
configuration with three different rectangle types, another configuration with
two different rectangle types, and a configuration with only a single rectangle
type. Test case 7 includes all of the results from the 1000 trials using our
algorithm, while test case 8 includes all of the results from the 1000 trials
using a simple algorithm that only rounds up fractional rectangles. Under
the ”Trials” column, we list the number of instances that are included in
each test case, and under the ”Avg”, ”Min”, and ”Max” columns we list the
mean average height increase, minimum height increase, and maximum height
increase, respectively, within each test case with respect to the height of an
optimal fractional packing. Note that in all 1000 instances shown in Table 1
the fractional packing contained three configurations.

The results shown in Table 1 include some of the largest height increases
with respect to the fractional packing that we were able to produce in our
testing (recall that the running time of our algorithm increases as the rectan-
gles become more narrow). Observe that in test cases 2, 5, and 6, when two
of the three configurations have only a single rectangle type each, the problem
becomes simpler: the boundaries between the cases are limited to the config-
uration that has multiple rectangle types, and often one of the configurations
with a single rectangle type can be rounded up without increasing the height
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by a large amount. As seen in the table, 122 of the 1000 trials were this simpler
version of the problem and their average height increases (0.834, 0.828, and
0.718 for test cases 2, 5, and 6, respectively) were the lowest within the table.

The instances from Table 1 that have the highest average height increases
are in test cases 1 and 3, with height increases of 0.913 and 0.941, respectively.
Recall that these test cases are the most complicated versions of the problem
and required multiple different algorithms (described in the previous sections)
to transform the fractional rectangles into whole ones. When SUncommon has
the maximum number of rectangle types (6) in its configurations (3 + 2 + 1
or 2 + 2 + 2), the instance is the most difficult to solve. As seen in the table,
552 of the 1000 trials were this more complicated version of the problem,
which represents a majority of the instances. We did not perform additional
experiments with even narrower rectangles because of the increased running
time.

9.4 Final Observation

We compared our 2DHMSPP algorithm for three types against optimal frac-
tional solutions computed by Cplex. Even though our algorithm has a worst
case performance of 1.5 + ε plus the height of an optimal fractional packing,
its average performance was significantly better. Our algorithm produces solu-
tions that are closest to the optimal fractional packings on instances where
the rectangle types are short and wide and produces solutions that are fur-
thest from the optimal where the rectangles are tall and narrow. Moreover,
for instances that have at most two configurations our algorithm performs
significantly better than when there are three configurations.
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