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Abstract. In most data mining applications, accurate ranking and prob-
ability estimation are essential. However, many traditional classifiers aim
at a high classification accuracy (or low error rate) only, even though they
also produce probability estimates. Does high predictive accuracy imply
a better ranking and probability estimation? Is there any better eval-
uation method for those classifiers than the classification accuracy, for
the purpose of data mining applications? The answer is the area under
the ROC (Receiver Operating Characteristics) curve, or simply AUC.
We show that AUC provides a more discriminating evaluation for the
ranking and probability estimation than the accuracy does. Further, we
show that classifiers constructed to maximise the AUC score produce
not only higher AUC values, but also higher classification accuracies.
Our results are based on experimental comparison between error-based
and AUC-based learning algorithms for TAN (Tree-Augmented Naive
Bayes).

1 Introduction

Classification is the most important task in machine learning. In classification,
a classifier is built from a set of training examples with class labels. A key per-
formance measure of a classifier is its predictive accuracy (or error rate, which is
one (1) minus the accuracy) on the training and testing examples. Predictive er-
ror rate 1s simply the percentage of the number of incorrectly classified examples
versus the total number of examples. Many classifiers can also produce probabil-
ity estimation or confidence of the prediction. However, the error rate does not
consider how “far-off” (be it 0.45 or 0.01) the prediction of each example is from
its target, but only the class with the largest probability estimation. Such error-
based classifiers are optimal only under the following two assumptions: First, we
care nothing more about the classification results; and second, different types of
errors, such as false positive and false negative, are treated as equivalent.

In data mining applications, however, neither of those two assumptions is
often true. For example, in direct marketing, we often need to promote the top
X% of customers during gradual roll-out, or we often deploy different promotion
strategies to customers with different likelithoods of buying some products. To
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accomplish these tasks, we need more than a classification of buyers and non-
buyers. We need at least a ranking of customers in terms of their likelihoods
of buying. Thus, a ranking is much more desirable than just a classification. Is
it true, however, that a classifier with a smaller error rate always has a better
ranking?

In addition, the costs of errors, such as false positive and false negative, can
be quite different. In direct marketing, for example, the cost of missing a valuable
buyer is often much higher than the cost of promoting a non-buyer. In this case,
classifiers that produce small error rates do not optimise the business goal: which
customers shall be promoted for the maximum profit?

Last, the probabilities on the prediction are often crucial for optimal decision
making. For example, if for an example e, the cost of predicting class ¢ when the
true class of e is j is C(i, j, €), the Bayes optimal prediction for e is the class i
that minimises the expected loss:

R(ile) = ZP(jle)C(i,j, €). (D

R(i|e) is the expected cost of predicting e to be class 7. Clearly, Bayes opti-
mal prediction requires accurate probability estimation, more than ranking and
classification alone.

If we are aiming at accurate ranking or probability estimation from a clas-
sifier, one might naturally think that we must need true ranking or true prob-
abilities in the training examples. In most scenarios, however, that is not pos-
sible. Most likely, what we are given is a dataset of examples with class labels.
Thus, given only classification labels in training and testing sets, are there better
methods than the error rate to evaluate classifiers that also produce probability
estimates or ranking, for the purpose of data mining applications?

The answer is the ROC curve! ROC (Receiver Operating Characteristics)
curve [11,10] compares the classifiers’ performance cross the entire range of class
distributions and error costs. Details of ROC curve and related calculations are
in the Appendix, and we only give an intuitive explanation here. Figure 1 shows
a plot of four ROC curves, each representing one of the four classifiers, A through
D. A ROC curve X is said to dominate another ROC curve Y if X is always
above and to the left of Y. This means that the classifier of X always has a lower
expected cost than that of Y, over all possible error costs and class distributions.
In this example, A and B dominate D.

However, often there is no clear dominatingrelation between two ROC curves.
For example, curves A and B are not dominating each other in the whole range.
In those situations, the area under the ROC curve, or simply AUC, is a good
“summary” for comparing the two ROC curves. Clearly, if one ROC curve dom-
inates the other, its AUC must be larger. Intuitively, if the AUC of one ROC
curve is larger than the AUC of the other ROC curve, its probability estimation
would likely to be better too. Bradley [1] shows that AUC is a proper metric for
the quality of classifiers averaged across all possible probability thresholds.

We believe that AUC should always be used as a more discriminating eval-
uation method than the error rate for classifiers that produce probabilities. For
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Fig.1. An example of four ROC curves.

example, if we have two classifiers, 1 and 2, both producing probabilities for a set
of 10 testing examples. Assume that both classifiers classify 5 of the 10 examples
as positive, and the other 5 negative. If we rank the testing examples according
to increasing probabilities, we get the two rank lists as in Table 1.

Table 1. An example in which two classifiers have the same classification accuracy,

but different AUC values.

Classifier 1| — — — — +| — 4+ + ++
Classifier 2| + — — — —| 4+ 4+ + +—

Clearly, both classifiers produce an error rate of 20% (one false positive and
one false negative), thus the two classifiers are equivalent in terms of the error
rate. However, intuition tells us that Classifier 1 1s better than Classifier 2, since
overall positive examples are ranked higher in Classifier 1 than 2. If we calculate
the AUCs, we obtain that the AUC of Classifier 1 is %, and the AUC of Classifier
2 1s %. Clearly, AUC tells us that Classifier 1 is indeed better than 2.

For a perfect classifier, which ranks all positive examples with higher proba-
bility than any negative examples, the AUC would be 1. Tn the worst case (the
reverse of above), the AUC is equal to 0. If the ranking is random, then the AUC
is 0.5. Note, however, that AUC is a global measure of a classifier, and is not
always better than error rate. Counter examples can be found in Section 3.1.

Since AUC is a better evaluation method than the error rate for data mining
algorithms that also produce probabilities, the next natural question is: Can we
construct classifiers using AUC directly, rather than using error based matrix
(such as entropy, error rate in cross-validation)? Clearly, we can use AUC in
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constructing most popular learning algorithms, such as Bayesian networks and
decision trees. For example, in decision-tree learning, instead of using information
gain (ratio) to choose the best attribute at the top of the (sub)tree, we can
choose an attribute that produces the maximum AUC for the current tree under
construction. Such decision trees would maximise AUC on the training data, and
hopefully, on the testing as well (if overfitting is prevented).

In this paper, we study how to use AUC to construct Bayesian classifiers,
and compare this strategy to several previous algorithms that based on error
rate. We choose Bayesian networks since they are essentially approximating the
underlying probability distribution, so it is more likely for AUC-constructed
Bayesian networks to produce larger AUC values.

The rest of the paper i1s organized as follows: Section 2 reviews necessary
background about Bayesian networks, and in particular, TAN, which our new
AUC-based learning algorithm will construct. Section 3 proposes a new learning
algorithm for AUC-based TAN learning, and compares it to three other learning
algorithms by empirical experiments.

2 Review of Learning Simple Bayesian Networks

Bayesian networks (BNs) are probabilistic models that combine the probability
theory and the graph theory. They represent causal and probabilistic relations
(by arcs and conditional probability tables) among random variables (nodes)
that are governed by the probability theory. Probabilistic inference can be made
directly from Bayesian networks. Bayesian networks have been widely used in
many applications, because they provide intuitive and causal representations of
our real-world applications, and they are supported by a rigorous theoretical
foundation.

Bayesian networks have often been used in classification. Assume Ay, As,- - -,
Ap are n attributes. An example e is represented by a vector (a1, das,, -, a),
where a; is the value of A;. Let C represent the classification variable that
corresponds to the class, and ¢ represent the value that C' takes.

From the Bayes Rule, the probability of an example e = (ay, as, - - -, ay,) being
class ¢ 1s

p(ala ag,y -+, anlc)p(c)
p(alaGZa"'aan) ’

e 1s classified into the most probable class ¢; 1.e.,

plele) =

g(@) :m?‘Xp(clalacEZa"'aan)a (2)
where g(e) is called a Bayesian classifier.

The term p(clay, as, - - -, ay) is difficult to estimate. Assume that all attributes
are independent given the value of the class variable; that is,

n
p(ala a9y, anlc) = Hp(ailc)a
=1
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the resulting g(e) is then:

g(e) = maxp(e) [ [ plaile). (3)

g(e) is called a Naive Bayesian classifier, or simply Naive Bayes (NB). Figure 2
(a) shows an example of Naive Bayes.

(a) (b)

Fig. 2. (a) an example of Naive Bayes (b) an example of TAN

Because values of p(a;|c¢) can be estimated easily from the training examples,
Naive Bayes is easy to construct. It is also, however, surprisingly effective in
classification. Unfortunately, the independence assumption is rarely true in real-
world applications. Indeed, Naive Bayes is found to work poorly for regression
problems [3], and produces poor probability estimates [8]. Therefore, researchers
have extended the structure of Naive Bayes to represent dependencies among
attributes!. Tree Augmented Naive Bayes (TAN) is such an extension, in which
the classification node points directly to all attributes (as in Naive Bayes), but
an attribute can have one parent from another attribute. Figure 2 (b) shows an
example of TAN. TAN is a specific case of general Augmented Naive Bayesian
networks (or simply ANB), where the classification node also points directly to all
attributes, but where there is no limitation on the arcs among attributes (except
that they do not form any directed cycle). The general ANB is as powerful as
general Bayesian networks.

TAN is a nice trade-off between complexity of learning and representational
power. In the past, a number of learning algorithms have been published on
learning TAN. Some algorithms, such as [2,4], are based on conditional inde-
pendencies among attributes (Cl-based). Others, such as [6], are based on min-
imising the error rate (error-based). There is no previous work that learns TAN

! Most of the extensions, however, aim at improving the predictive accuracy, not at
better probability estimations.
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based on AUC. The questions we will answer in this paper are: Do error-based
learning algorithms also produce accurate probability estimates? What about
learning TAN by maximising directly AUC? How do we compare these three
learning algorithms (CI-based, error-based, and AUC-based) in terms of the er-
ror rate and the AUC?

3 Learning TAN with Accurate Probability Estimates

3.1 Error Rate vs AUC

As we have seen, AUC can be viewed as a better measure than the error rate for
classifiers that rank or produce probabilities, but a larger AUC does not always
imply a lower error rate. Table 2 shows such a counter example. It is easy to

obtain the AUC of Classifier 1 1s 0.889, and 0.694 for Classifier 2. However, the
error rate of Classifier 1 is 33.3%, but only 16.7% for Classifier 2.

Table 2. A counter example in which one classifier has higher AUC but lower classi-
fication accuracy.

Classifier 1|—— ——+4+|——4++++
Classifier 2|4+ — — — — — 4+ ++—

We will compare three different TAN learning algorithms in terms of the
error rate and AUC values: one is Cl-based, the second one is error-based, and

the third is AUC-based. We will discuss each of these algorithms below.

3.2 ClI-based TAN Learning Algorithms

CI (conditional independence) based learning algorithms have been studied by
many researchers [4]. The basic idea is to detect the conditional dependence be-
tween two attributes by performing conditional independence tests based on the
data, and then search for a network using the detected dependencies. Essentially,
Cl-based learning algorithms attempt to directly approximate the underlying
probability distribution. Intuitively, they may tend to produce more accurate
probability estimates.

Chow and Liu’s TAN learning algorithm [2] is a typical CI-based algorithm.
The idea here is to estimate dependencies between each pair of attributes, and
find a maximum spanning tree based on the estimation in building the TAN.
Friedman et al. [4] extend Chow and TLiu’s algorithm [2] by using conditional
mutual information between two attributes given the class variable. This function
is defined as

Pz, yl2)

Ip(XGY12) = 3 Pl 2)log prip iy

T,Y,2
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Friedman et al.’s algorithm [4] is described below, and is used in our com-
parison. We refer to this algorithm as CI-TAN in our paper.

1. Compute Ip(A4;, A;|C’) between each pair of attributes, ¢ # j.

2. Build a complete undirected graph in which the nodes are the attributes A4,
.-+, Ap. Annotate the weight of an edge connecting A; to 4; by Ip(A;; A;|C).

3. Build a maximum weighted spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root
variable and setting the direction of all edges to be outward from it.

5. Construct a TAN model by adding a node labelled by C' and adding an arc
from C' to each A;.

3.3 Error-based TAN Learning Algorithms

Error-based algorithms of learning Bayesian networks search for the network that
minimises the classification error (or maximises the accuracy). They belong to
scored-based algorithms since the accuracy is the score to maximise. In learning
TAN, the SuperParent algorithm is a recent algorithm that searches for arcs by
maximising the accuracy via cross validation [6]. A node is called a SuperParent
if we extend arcs from it to every orphan (nodes without parent). The algorithm
SuperParent is depicted below.

1. Initialise network to Naive Bayes.

2. Evaluate the current classifier by its classification accuracy.

3. Consider making each node a SuperParent. Let A,, be the SuperParent
which increases accuracy the most.

4. Consider an arc from A,, to each orphan. If the best such arc improves
accuracy, then keep it and go to 2; else return the current classifier.

Since error-based algorithms aim directly at higher classification accuracy,
intuitively, it may tend to produce a model with higher classification accuracy
than Cl-based algorithms. This has been verified by results in [6], as well as
in our experiment (see Section 3.5). However, the most intriguing question is:
Would an AUC-based SuperParent algorithm produce better probability esti-
mation measured by AUC, compared to error-based SuperParent algorithm?

3.4 AUC-based SuperParent Algorithm

AUC-based TAN learning algorithms simply use AUC as the score to maximise
via cross-validation during the search for arcs in learning TAN. Intuitively, since
we search the best TAN structure based on higher AUC values, the resulting TAN
would tend to produce higher AUC, or more accurate probability estimates.

We extend SuperParent algorithm in which AUC is used for evaluating cur-
rent network instead of classification accuracy. This algorithm is called AUC-
SuperParent in our paper. The algorithm is described below.

1. Initialise network to Naive Bayes.
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2. Evaluate the current classifier in terms of its AUC.

3. Consider making each node a SuperParent. Let A,, be the SuperParent
which increases AUC the most.

4. Consider an arc from A;, to each orphan. If the best such arc improves AUC,
then keep it and go to 2; else return the current classifier.

3.5 Empirical Comparisons

The questions we are interested in are: Do AUC-based algorithms really result in
classifiers with higher AUC? If AUC is a better and more discriminating measure
than the error rate, would AUC-based learning algorithms also produce a lower
error rate?

We will answer those questions by empirical experiments. We use twelve
datasets from the UCI repository [7] to conduct our experiments. Table 3 lists
the properties of the datasets we use in our experiments. Most of these datasets
were also used in comparing SuperParent and TAN published by Keogh and
Pazzani [6].

Table 3. Descriptions of the datasets used in our experiments.

Dataset | Attributes| Class| Instances

Australia 14 2 690
breast 10 10 683
cars 7 2 700
dermatology 34 6 366
ecoli 7 8 336
hepatitis 2 320
import 24 2 204
iris 5 3 150
pima, 2 392

segment 19 7 2310
vehicle 18 4 846
vote 16 2 232

We have also included Naive Bayes in our experiments, since other algorithms
are derived from it. Our experiments follow the procedure below:

1. The continuous attributes in the dataset are discretized.

2. For each dataset, run Naive Bayes, CI-based TAN [4], SuperParent [6], and
our AUC-SuperParent with the 5-fold cross-validation, and obtain the AUC
and classification accuracy on the testing set unused in the training.

3. Repeat 2 above 20 times and obtain the average AUC and classification
accuracy on the testing data.
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Table 4 shows the experimental results of AUC values of four learning algo-
rithms: Naive Bayes, Cl-based TAN, SuperParent, and AUC-SuperParent. They
are represented as NB, CI-TAN, SP, and AUC-SP respectively in the table.

Table 4. Experimental results of the AUCs for Naive Bayes, CI-TAN, SuperParent
and AUC-SuperParent.

Dataset NB CI-TAN SP AUC-SP
Australia [75.240.30(75.240.48|74.7+0.44|76.2+0.48
breast 47.64+1.19(43.341.11|42.941.10|42.240.92
cars 93.740.17|93.4£0.24|96.1+£0.16{97.1£0.12
dermatology|99.940.01(99.240.47|99.340.46(99.64+0.33
ecoli 99.340.06|98.9+£0.08(99.240.07{99.2+0.08
hepatitis  [62.54+0.70{62.4+0.60(61.31+0.73|62.51+0.70
import  |99.240.10{97.840.19|99.04+0.14|99.240.11
iris 96.540.67|97.1£0.18|97.3+£0.19|97.9+0.18
pima 77.440.44)|75.84£0.51|77.240.46|76.7£0.50
segment |95.3+0.05|97.040.05(97.24-0.06(97.01-0.05
vehicle  [91.140.49(92.440.71{93.340.39(93.240.42
vote 86.240.54|86.0£0.56|86.4+0.55|85.4+0.55

We use a simple threshold, 1%, on average AUC values to judge if an al-
gorithm outperforms another. The comparison of the four algorithms on these
datasets is presented in Table 5. In the table, i-j-k means that the algorithm
at the corresponding row wins in ¢ datasets, loses in j datasets, and ties in &
datasets, compared to the algorithm at the corresponding column.

We can see that the average AUC of AUC-SuperParent is slightly better
(3 wins, 1 loss, and 8 ties) than error-based SuperParent and CI-TAN; and
significantly better than Naive Bayes. There are five datasets in which AUC-
SuperParent is higher than that of Naive Bayes for more than one percent, but
only one dataset in which the reverse happens. Overall, AUC-SuperParent is
best regarding the AUC score. That confirms that using AUC directly to build
Bayesian networks will result in a network with more accurate ranking or prob-
ability estimation. The tables also show that Cl-based TAN does not perform

Table 5. Comparison of the algorithms in terms of AUC.

Algorithms| NB |CI-TAN| SP |[AUC-SP
NB
CI-TAN |2-3-7
SP 3-2-7| 3-1-8
AUC-SP |5-1-6] 3-1-8 |3-1-8




10 Charles X. Ling and Huajie Zhang.

well; it 1s even slightly worse than Naive Bayes. Cl-based TAN 1s constructed
with the goal of a good fit for conditional independencies of all attributes with
the data, not necessarily a good fit of the classification accuracy or its probabil-
ity estimation, which is what we actually care to measure. This shows indirectly
that if we want to learn a Bayesian network for a certain goal, the best bet is to
search the network that maximises a score of that goal. Ranking and probability
estimation are important for data mining, thus, data mining models should be
constructed to maximise the AUC value, not the predictive accuracy.

Since AUC 1s a more discriminating evaluation method compared to the
accuracy, one may expect that the AUC-SuperParent would also have a higher
predictive accuracy compared to error-based SuperParent. Table 6 shows the
experimental results of the four learning algorithms on the classification accuracy
on the testing set.

Table 6. Experimental results of the accuracies of Naive Bayes, CI-TAN, SuperParent
and AUC-SuperParent.

Dataset NB CI-TAN SP AUC-SP
Australia [76.140.39|76.740.32|76.0+0.30|76.6+0.39
breast 68.340.36|73.3+£0.37|74.840.34|74.6+£0.33
cars 86.140.29|85.4+0.37|90.0+0.27|90.8+0.25
dermatology|98.3+0.14(97.740.17|98.54+0.13[98.240.13
ecoli 96.940.20(96.1+£0.23|96.84+0.21|96.7+0.21
hepatitis  |71.040.48|70.540.42|70.34+0.48|71.040.48
import  |97.040.24(93.6+0.37|96.74+0.28|96.74+0.23
iris 91.440.45|91.2+0.48(91.6+0.47|91.3+0.49
pima 71.940.40|70.5+£0.46|71.54£0.39|71.0+£0.44
segment |73.14+0.21(82.34+0.17(82.64-0.18(81.94-0.19
vehicle  |82.0+0.26|89.34+0.23|89.440.22{90.040.23
vote 76.0£0.55|78.6+£0.61|77.0+£0.60{79.9£0.52

When we set the threshold to be 0.5%, the comparison of the four algorithms
in terms of their classification accuracies is shown in Table 7. It indicates that
AUC-SuperParent is better, in terms of predictive accuracy, than Naive Bayes
(6 wins, 1 loss, and 5 ties), CI-TAN (9 wins, 0 loss, and 3 ties), and SuperParent
(5 wins, 2 losses, and 5 ties).

As we discussed earlier, AUC is a more discriminating evaluation criterion
than the accuracy, thus, to build a TAN for the purpose of high classification
accuracy, we should probably still maximise AUC during the search of network
structures.
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Table 7. Comparison of the algorithms in terms of classification accuracy.

Algorithms| NB |[CI-TAN| SP |[AUC-SP
NB
CI-TAN |5-5-2
SP 5-1-6| 6-2-4
AUC-SP |6-1-5| 9-0-3 |5-2-5

4 Conclusion

In this paper, we investigate TAN learning algorithms for the purpose of accurate
probability estimation, often required in many applications of data mining. We
show that AUC is a more discriminating measure of the quality of ranking or
probability estimation. We also propose a new algorithm, AUC-SuperParent,
for learning TAN by directly using AUC as the search criterion. By empirical
experiments, we have obtained the following interesting results:

— AUC-based Bayesian network learning algorithms tend to produce more ac-
curate ranking and probability estimation, than the error-based algorithms.

— AUC-based Bayesian network learning algorithms tend to produce higher
classification accuracy than the error-based algorithms.

We can thus conclude that AUC should be used both as an evaluation criterion,
and as a scoring function, for data mining algorithms.

In our future research, we will study other methods for improving probability
estimation such as smoothing, binning, and bagging. Another direction we are
working on 1s to study other learning algorithms using AUC, such as AUC-based
decision-tree learning algorithms.
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Appendix:

We review the basics of ROC and AUC here. See [9,10] for more details.

Let {P, N} be the positive and negative instance classes, and let {P, N} be
the classifications produced by a classifier. Let P(P|I) be the posterior proba-
bility that an instance [ is positive. The true positive rate, TP, of a classifier

is:
positives correctly classified

TP = P(P|P)~

total positives

The false positive rate, F'P, of a classifier is:

negatives incorrectly classified

FP=P(P|N)~

total negatives

On a ROC graph, TP is plotted on the ¥ axis and F'P is plotted on the
X axis. In the ROC space, each classifier with a given class distribution and
cost matrix is represented by a point (F P, TP). For a model that produces a
continuous output, 7P and F'P can vary as the threshold on the output varies
between its extremes (0 and 1). The resulting curve is called the ROC curve. A
ROC curve illustrates the tradeoff available with a given model, in which a point
is recorded for a different cost and class distribution. When a ROC dominates
another, then its classifier always has a lower expected cost than the other over
all possible error costs and class distributions. However, if two ROCs do not
dominate each other, then AUC can be used as a rough measure for the expected
cost. Hand and Till [5] showed that AUC is equivalent to the probability that
a randomly chosen negative example will have a smaller estimated probability
of belonging to the positive class than a randomly chosen positive example.
Therefore, the larger the AUC, the more likely that a negative example will not
be misclassified. They give a simple formula for calculating AUC [5].



