
Putting Fürer Algorithm into Practice

Svyatoslav Covanov, supervised by Marc Moreno Mazza, ORCCA Lab

January 4, 2015

1 Introduction

The general context

The multiplication of polynomials is a primitive widely used in computer algebra. It
appears to contribute to a large panel of mathematical functions. Consequently, the
optimization of this primitive is critical in cryptography for instance.

Fast Fourier Transform (FFT) is commonly used in order to multiply polynomials.
This is why an improvement of the Fast Fourier Transform algorithm is important.
The multiplication of polynomials is connected to the multiplications of big integers.
For almost 35 years, the best asymptotical complexity of the best known algorithm
to multiply big integers of size n was O(n log n log log n). The algorithm in itself was
due to Schönhage-Strassen [Knu97]. In 2007, Martin Fürer published a paper [Für07]
achieving a complexity of O(n log n2O(log∗ n)). We still don’t know if we could reach
the theoretical bound O(n log n log∗ n) or even O(n log n). A more practical problem
is to be able to make the Fürer’s algorithm as efficient as the current implementations
of Schnhage-Strassen algorithm.

The research problem

The goal of the internship was to improve the theoritical complexity of the multi-
plication of polynomials used in the BPAS (Basic Polynomial Algebra Subprograms)
Library [BPA], developped by Changbo Chen, Farnam Mansouri, Marc Moreno Maza,
Ning Xie and Yuzhen Xie, which is fast in practice. This goal lead me to improve the
one dimensional FFT which was used as a black box. In order to do so, I improved in
particular the arithmetic involved in this one dimensional FFT and I helped to make
it cache-friendly.

I worked on a similar subject during an internship starting from April 2013 to
July 2013 in LORIA, in Nancy. I was working on the practical implementation of
the Fürer algorithm in language C. I managed to improve to asymptotical complexity
of the original algorithm of Fürer. This is why I thought I could bring an original
contribution to the subject.

Your contribution

The main cost of the arithmetic used in the FFT algorithm is due to the multiplication
over a finite field Z/pZ. I improved the arithmetical cost of this multiplication, which
is using the Montgomery’s trick.

The implementation of my improvement to the Fürer’s algorithm required to deter-
mine how to choose some finite field Z/pZ, which representation to choose and how to

1

implement it efficiently. One of my contribution was to compare different approaches
and allows to understand the best strategy.

Another contribution is related to the programming of the FFT in itself. I wrote
self-generating code allowing to write an optimized FFT (using methods like loop-
unrolling and optimizing the pipeline) in any radix.

Arguments supporting its validity

Experimentally, I observed that the optimization brought to the implementation of the
one dimensional FFT accelerated the previous implementation by a factor 4. In terms
of proof, the new implementation has the advantage to be more cache-friendly and
reduces the number of cache-misses, which has been observed with a tool like perf.

The arithmetic related to the improvement brought to the Fürer’s algorithm has
been compared to the nave approach and is better in theory. The practical aspect
of this new arithmetic depends essentially on the vectorization instructions and bit
manipulation.

The improvement of the Montgomery’s trick relied on the reduction of the number
of cycles involved, which has been verified by the experiments. It seems to depend on
the architecture of the machine used, and in particular on pipeline.

Summary and future work

The following would involve an implementation of the improvement of Frer’s algorithm
using FPGA technology, or a difference choice of finite field for the specific purpose of
of multiplication of big integers.

My improvement to Montgomery’s trick leads to a set of theoretical improvements
which involve the use of vectorization and should be tested in the future. So far, it has
been used for one machine word. It would be interesting to determine how to adapt it
for two machine words.

The self-generating code allows to specialize all algorithms involved in FFT for
some primes. Loop-unrolling and pipelining has been widely used but it is interesting
to explain why some optimizations work and why other don’t. It is also interesting to
determine the optimal primes for a binary machine. We know that Proth numbers are
very adapted to the use of Montgomery’s trick. Can we choose an even more restrictive
class of primes such that the arithmetical cost of the FFT is reduced?

Note and Acknowledgements

This report is intended to be used in order to publish an article. This is why it is
written in English.

I wish to thank my supervisor Marc Moreno Maza. Working with him was very
entertaining and contributed a lot to my motivation during this internship. He has an
impressive skill to get the best from people working with him.

I am also grateful to Yuzhen Xie for her help in my implementation and her expe-
rience of architecture optimizations. I learned a lot about high performance and low
level implementation during this internship, which will be undoubtedly useful for my
Ph.D. and the rest of my carrier in research in computer science.

2

2 Background: FFT and polynomial multiplication

This section presents the basics needed to understand the state of the art involved in
polynomial multiplication.

2.1 Radix 2 Fast Fourier Transform

In order to multiply two polynomials, the evaluation-interpretation paradigm seems to
allow us to reach the best asymptotic bounds for the estimation of algebraic complexity.
In other terms, to multiply polynomials A and B fast, we have to evaluate those
polynomials at some points ω0 · · ·ωK , and retrieve the result C = A · B from those
evaluations, which corresponds to the interpolation.

The FFT method is used to evaluate a univariate polynomial A, of degree less than
N , over a commutative ring R containing a primitive N -th root of unity ω, at the N
points 1, ω, ω2, · · ·ωN−1. Several algorithms realize this method; they usually follow
a divide-and-conquer strategy. This is the case for the most popular one sketched in
Algorithm 1, which assumes that N is a power of 2. This algorithm is usually refered
as the radix 2 FFT since it is a 2-way divide-and-conquer procedure.

Algorithm 1 Radix 2 Fast Fourier Transform in R

procedure FFTradix 2((A1A0...AN−1), ω)
if N = 1 then

return A0

else
Ã[0] = FFTradix 2((A0, A2...AN−2), ω2) . We put apart even and odd parts
Ã[1] = FFTradix 2((A1, A3...N−1), ω2)
Ω = (1, ω, · · · , ωN/2−1)
R[0] = Ã[0] + Ω · Ã[1]
R[1] = Ã[0] + ωN/2Ω · Ã[1]
return R[0]|R[1] . ”—” is the concatenation of 2 vectors

end if
end procedure

The complexity analysis of Algorithm 1 gives a bound of the form O(N log2N),
when counting the number of arithmetic operations in R.

Let us estimate now the cache complexity of Algorithm 1 for an ideal cache with
Z words and L words per cache line. We assume that each coefficient of R fits within
a machine word and that the array storing the coefficients of a polynomial consist of
consecutive memory words. If Q(N) denotes the number of cache misses incurred by
Algorithm 1, then, neglecting misalignments, we have for some 0 < α < 1,

Q(N) =

{
N/L if N < αZ (base case)

2Q(N/2) +N/L if N ≥ αZ (recurrence)
(1)

Unfolding k times the recurrence relation (1) yields

Q(N) = 2kQ(N/2k) + kN/L.

Assuming N ≥ αZ and choosing k such that N/2k ' αZ, that is, 2k ' N
αZ , or

3

equivalently N/L ' 2kαZ/L, we obtain

Q(N) ≤ 2kαZ/L+ kN/L
= N/L+ kN/L
= (k + 1)N/L

≤ (log2(NαZ) + 1)N/L.

Therefore we have Q(N) ∈ O(N/L (log2(N) − log2(αZ))). This result is known to
be non-optimal, following the work of Hong Jia-Wei and H.T. Kung in their landmark
paper I/O complexity: The red-blue pebble game in the proceedings of STOC ’81 [HK81].

2.2 Fürer’s algorithm

Fürer’s algorithm [Für09] uses a different divide-and-conquer pattern than the one of
Algorithm 1. This modification is motivated by the assumption that for some integer
K dividing N there exists a K-th root of unity Ω such that the multiplication of an
arbitrary element of R by Ω is “computationally much cheaper” than the the mul-
tiplication of two arbitrary elements of R. For instance, if R is the field of complex
numbers, we have a natural 4-th root of unity which is ı. The multiplication by a power
of i is very cheap on a binary machine, since it requires only shift and change of sign.

To take advantage of such primitive roots of unity, Fürer’s algorithm divides the
computation according to the Cooley-Tukey factorization. If the integer N writes J ·K,
we split A into K parts of size J , call the FFT on those parts, multiply by some twiddle
factors the resulting coefficients, and finally call he FFT on J parts of size K.

Let ω be an N -th primitive root of unity. Denote by ak the degree k coefficient of
A and by bk the value A(ωk), for 0 ≤ k < N . Then, for 0 ≤ j′ < K and 0 ≤ j < J , the
Cooley-Tukey factorization writes:

bj′J+j =

K−1∑
k=0

J−1∑
k′=0

ω(j′J+j)(k′K+k)ak′K+k

=

K−1∑
k=0

ωJj
′k ωjk

J−1∑
k′=0

ω(Kjk′)ak′K+k︸ ︷︷ ︸
inner transforms︸ ︷︷ ︸

coefficients of the outer transforms︸ ︷︷ ︸
outer transforms

Assuming that N is a power of K, the above formula leads to Algorithm 2.

4

Algorithm 2 Radix K Fast Fourier Transform in R

procedure FFTradix K((α0α1...αN−1), ω, N = J ·K, Ω = ωN/K)
for 0 ≤ k < K − 1 do . Outer transforms

for 0 ≤ k′ < J − 1 do
γ[k][k′] = αk′K+k

end for
c[k] = FFTradix K(γ[k], ωK , J,Ω)

end for
for 0 ≤ j < J − 1 do . Inner transforms

for 0 ≤ k < K − 1 do
δ[j][k] = c[k][j] ∗ ωjk . Computation of coefficients

end for
d[j] = FFTbase(δ[j], ω

J ,K,Ω)
for 0 ≤ j′ < K − 1 do

βj′J+j = d[j][j′]
end for

end for
return b = (β0, ..., βN−1)

end procedure

In Algorithm 2, the procedure FFTbase refers to Algorithm 1 or to an iterative ver-
sion of it. The inner transforms computed there use a K-th root of unity Ω. Assuming
that multiplying an arbitrary element of R by Ω is cheap enough, an analysis of the
above algorithm yields a bound of the form O(N logK N) arithmetic operations in R.
In the sequel of this section, we shall review this analysis as well as related complexity
estimates.

2.3 First arithmetic cost estimate for Algorithm 2

If we denote by TR(N) the number of arithmetic operations in R performed by Algo-
rithm 2, we clearly have:

TR(N) = K TR(N/K) + N + N/K TR(K). (2)

Assume N = Ke+1, that is e = logK(N)− 1. Unfolding e times Relation (2) yields

TR(N) = KeTR(K) + (N + N/K TR(K))e
≤ N/KTR(K) + (N/K) (K + TR(K)) e
≤ N/KTR(K)(1 + e) + Ne

(3)

Since TR(K) ∈ Ω(K), we deduce TR(N) ∈ O(N/K TR(K) (1 + e)) and thus

TR(N) ∈ O(N/K TR(K) logK(N)). (4)

If we take TR(K) ∈ O(K log2(K)), we retrieve the usual result TR(N) ∈ O(N log2(N)).
In order to obtain a finer result, we switch to bit complexity in the next section. The
intention is to create opportunities for taking into account a lower asymptotic upper
bound for TR(K).

2.4 Bit operation cost estimate for Algorithm 2

Let n be the total number of bits for writing the coefficient vector representing A. If
we denote by Tbit(n) the number of bit operations performed by the above algorithm

5

and assuming that each element of R is encoded by n/N bits, then we have:

Tbit(n) = K Tbit(J n/N) + N MR(1) + J Tbit(K n/N), (5)

where, for any non-negative integer d, multiplying two polynomials of R[x] of degree
less than d amounts at most to MR(d) bit operations. For convenience and based on
our assumption that each element of R is encoded by n/N bits, we define

Mbit(dn/N) := MR(d).

Using Bluestein’s FFT algorithm, which re-expresses the DFT as a convolution,
thus as polynomial multiplication, we can assume w.l.o.g.

Tbit(K n/N) ∈ O(Mbit(K n/N)).

Hence we deduce:

Tbit(n) = K Tbit(J n/N) + N Mbit(n/N) + J O(Mbit(K n/N)). (6)

That is:

Tbit(n) = K Tbit(n/K) + N Mbit(n/N) + N/K O(Mbit(K n/N)). (7)

Writing b := n/N , the above equality becomes:

Tbit(n) = K Tbit(N/K b) + N Mbit(b) + N/K O(Mbit(K b)). (8)

Observing that Mbit(d) ∈ O(Tbit(d)) (by means of three FFTs and one point-wise
multiplication) we have

Tbit(n) = K Tbit(N/K b) + N Mbit(b) + N/K O(Tbit(K b)). (9)

Unfolding logK(N) times leads to

Tbit(n) = (N Tbit(b) + N/K O(Tbit(K b))) logK(N) (10)

Assuming b = K = log2(n), this latter relation leads to Tbit(n) ∈ O(n log n 2O(log∗ n)),
where log∗ n represents the iterated logarithm operation, defined as follows

log∗ n :=

{
0 if n ≤ 1;

1 + log∗(log n) if n > 1
(11)

This finally proves that, under the assumption b = K = log2(n), Algorithm 2 can be
cast into the Fürer complexity class.

2.5 Cache complexity estimate for Algorithm 2

Let us estimate now the cache complexity of Algorithm 2 for an ideal cache with Z
words and L words per cache line. As before, we assume that each coefficient of R
fits within a machine word. If Q(N) denotes the number of cache misses incurred by
Algorithm 2, then, neglecting misalignments, we have for some 0 < α < 1,

Q(N) =

{
N/L if N < αZ (base case)

KQ(N/K) +N/L+N/KQ(K) if N ≥ αZ (recurrence)
(12)

6

We shall assume that K < αZ holds. Hence, we have Q(K) ≤ K/L. Thus, for N ≥ αZ,
Relation (12) leads to:

Q(N) = KQ(N/K) + 2N/L
≤ KeQ(N/Ke) + 2 eN/L

≤ Ke αZ
L + 2 eN/L

= N/L (1 + 2 e)
≤ N/L 3 e.

(13)

where e is chosen such that N/Ke = αZ, that is, Ke = N
αZ or equivalently N/L =

KeαZ/L. Therefore, we have Q(N) ∈ O(N/L (logK(N)− logK(αZ))). In particular,
for K ' αZ and since we have

Q(N) ∈ O(N/L logαZ(N). (14)

According to the paper I/O complexity: The red-blue pebble game, this bound would be
optimal for α = 1. In practice α is likely to 1/8 or 1/16 and Z is likely to be between
1024 and 8192 for an L1 cache. Hence, the above estimate of Q(N) suggests to choose
K between 64 and 1024. In fact, in practice, we have experimented K between 8
and 16. The reason is that optimizing register usage (minimizing register spilling) is
also another factor of performance and, to some sense, registers can be seen another
level cache. As an example, the X86-64 processors that we have been using have 16
GPRs/data+address registers and 16/32 FP registers.

2.6 Let us speculate a bit

Let us return to Relation (9) and assume that, in Algorithm 2, we could optimize the
function call

FFTradix 2(δ[j], ωJ ,K,Ω)

so that multiplication by a power of Ω could be hard-coded. More precisely, let us
assume

Tbit(K b) ≤ K log2(K) CR, (15)

where CR is an upper bound for the number of bit operations for multiplying an
arbitrary element of R by a constant of R. Then, we can choose CR such that Relation
(9) implies

Tbit(n) ≤ K Tbit(N/K b) + N Mbit(b) + N log2(K) CR, (16)

Recall that K is meant to be “small” and that Mbit(b) is the number of bit operations
for multiplying two arbitrary elements of R. Therefore, it is conceivable that, for b
large enough, we have

Mbit(b) ≥ log2(K) CR. (17)

Observe that Relation (15) implies Tbit(b) ∈ O(CR). Together with Relation (16), this
leads to

Tbit(n) ∈ O(N logK(N)). (18)

To some sense, the above remark is the key idea of Fürer’s algorithm. However, this
remark also suggests that, to make Fürer’s algorithm practically better than the classi-
cal radix 2 FFT algorithm, one should be able to make b large enough, that is, working
with prime fields where the characteristic is of several machine words size. We have
verified experimentally that, indeed, machine word size prime fields satisfying like Re-
lations (15) do not lead to an implementation of Fürer’s algorithm which can compete
with the classical radix 2 FFT algorithm using the same prime field.

7

3 Main Results

3.1 Improved modular arithmetic

Let us explain how the improvement to Fürer’s algorithm works. The idea is to use a
ring R of the form Z/pZ. The prime should be of the form xK + 1 where x is even. If
we decompose the elements of R in the x radix, we have a natural cheap K-th root of
unity in R which is x : the multiplication by a power of x of an element decomposed
in radix x is equivalent to some shifts, some change of sign, and some additions.

To include it inside the BPAS library, primes like (255 · 256)4 + 1 have been consid-
ered. This number can be rewritten like (216 − 28)4 + 1. Since the radix is sparse, we
can complete the multiplication of two elements of R represented in radix r and avoid
the cost of the divisions involved due to the fact that the result of the multiplication
has to be well represented in radix r. The details of this multiplication are given in
section 5.

The sparsity of the radix allows to compute the operations modulo and division
faster. The idea is to reduce the cost of working in a new radix, such that the main cost
of the multiplication modulo p = rK +1 will be concentrated in the first multiplication.

3.2 FFT code generator for Fürer class complexity algorithm

Relying on the last paper [HvdHL14] related to the multiplication of big integers,
an algorithm entering in the Frer’s class of complexity has been implemented. The
idea is to use, like suggested in the original Frer’s paper, an other radix P such that
P = O(log2N) where N is the size of the input and P a power of two.

The Bluestein’s chirp transform explains why we get a complexity as in Frer’s
algorithm. This transform allows, given a vector of size N over Z/pZ to exchange the
computation of its FFT using Cooley-Tukey for instance with the computation of a
multiplication of two polynomials of degree N over Z/pZ.

We use the idea of Bluestein to justify that the implementation of the algorithm is
optimal with a theoretical point of view in terms of algebraic complexity but also in
terms of cache complexity. The implementation uses a python code in order to generate
a code adapted to a given architecture, depending on some parameter like the size of
the Cache L1, or the number of registers.

4 Computing modulo Proth prime numbers: Montgomery’s
trick

4.1 The original version

The Montgomery trick [Mon85] is an improved way of performing the modular multi-
plication a · b mod p, given a, b, p in Z, where p > 2 is a prime. The nave way proceeds
by computing the product c = a·b in Z, followed by computing the remainder c mod p.
On common architectures, this remainder operation is usually very slow, compared to
that of multiplication. For instance, on some Intel architectures, the multiplication
will require 3-10 cycles, whereas the division will require 70-80 cycles [Int].

Morally, the Montgomery’s trick allows to compute c mod p using 3 multiplica-
tions. Let R = 2dlog2 |p|e. The Montgomery Multiplication is the following map:

∗ :

{
Fp × Fp −→ Fp × Fp
(u, v) 7→ (u · v)/R mod p

8

We compute this Montgomery multiplication in this way:
1. We precompute p′ such that R ·R−1 − p · p′ = 1 and p′ < R
2. We compute x = u · v
3. We compute y = x mod R
4. We compute z = y · p′ mod R
5. The result is (x+ z · p)/R
Let us show why this gives us the expected result. There exist k, k′ ∈ Z such that

we have:

x+ z · p = y + k ·R+ (y · p′ − k′ ·R) · p = k ·R+ y · (1 + p · p′)− k′p ·R

Then x+ z · p is of the form q ·R, which means that x/R = q mod p.
Since 0 ≤ x < p2 and z < R, we have x+ z · p < 2p ·R, which means that the result

is in the interval [0; 2p[.

4.2 Xin Li’s version

Let us pick a prime p such that we have

p− 1 = c2n and l ≤ 2n,

where ` := dlog2 pe ≤ b and b is the number of bits of a machine word.
Let R = 2` and 0 ≤ x ≤ (p − 1)2. We compute x

R mod p with the following
instructions:

1. We compute x = u · v
2. We compute y and k such that y = x+ k ·R and 0 ≤ y < R
3. We compute z and k′ such that z = y · c2n + k′ ·R and 0 ≤ z < R
4. The result is −k + k′ + (z · c2n)/R
Since c2n = −1 mod p, the following equations hold modulo p:

x

R
= −k +

y

R
= −k + k′ − z

R
= −k + k′ +

z · c2n

R

The advantage of this version is that instead of doing 3 long multiplications, we are
computing 2 long multiplications (i.e. in double precision) and 1 short multiplication
(i.e. in single precision), which on common architectures is very fast. The short mul-
tiplication is the computation of z · c2n. Indeed, we have z = y · c2n mod R, which
means that the n first bits of z are all zeros. The non zeros bits are stored on a chunk
of size `− n, which is the size of c. Since l ≤ 2n, c < 2n and c · z/2n < 2` < 2b.

4.3 New improvements

The main issue with the last version of Xin Li’s multiplication is the final interval.
Indeed, the result computed is in the interval [−(p− 1); 2(p− 1)], instead of [0, 2p− 1]
like in the original version. Experimentally, the normalization of the result in the
interval [0, p[appeared recently to be very slow. This suggested us to revisit the
original vversiob of Montgomery multiplication.

Reusing the notations of Section 4.1, we observe that in the modular product z =
y · p′ mod R, only the “lower part” of y · p, hence this latter product can be computed
using single precision, since R fits on a machine word.

The assembly routine implemented is given in Appendix D.
The first multiplication is the multiplication u · v. The second ”imul” instruction

is the multiplication by INV PRIME, which contains the value of p′ described before.

9

This multiplication is followed by the third long multiplication ”mulq”. The result is
contained in the rdx register, in the interval [0; 2p[. We want that the correct residue
in [0; p[. This is why we end the routine by the rearrangement in the correct interval.
To proceed, we subtract p to rdx and store the result in rax. The operation ”sar”
fills the register with the sign bit. In other terms, if rax is negative, then the ”sar”
instruction returns the machine word all ones. Otherwise, it returns zero. The next
steps consists in computing the logical ”and” with the value of p and returning the
correct residue.

We can, moreover, choose primes such that dlog2 ce+dlog2Re < 64. This way, even
the last multiplication will be a short multiplication. Indeed, we will have f < R and
p = c2n+1, which means that if we compute f ·p, we can decompose this multiplication
like this : f · c2n + f , and the multiplication of f by c fits on a machine word. In
conclusion, we will have to compute a short multiplication, a shift by n and an addition
with f .

There is an opportunity for vectorization on the second multiplication by p′. We
observe that p′ will be of the form c′2n − 1. Indeed, writing p′ = c′2n

′ − 1 and using
the fact that pp′ − 1 is a multiple of R = 2` with ` ≥ n. leads to n′ ≥ n. Then, , let us
decompose p′ · y mod R in this way :

p′ · y ≡ c′2ny − y mod R

We just need to compute c′2ny mod R = c′y mod R/2n. This is why getting the
`− n = dlog2 ce first bits of c′ · y is enough to be able to recompose y · p′ mod R.

5 Computing modulo sparse radix prime numbers

The problem of this section is to determine how to compute in a ring R := Z/pZ with
the following hypotheses:

1. p can be decomposed like this: p = rK + 1,

2. p fits on a machine word,

3. r is sparse (to be specified shortly after).

Let M represent the size of a machine word and assume that K divides M .
The radix r is sparse means here that this number of the form 2M/K ± 2u, where u

is the smallest we can find. The idea is to represent every x of R as a polynomial in
Z[r]. The coefficients can be stored on K slots of ` := blog2(r)c+ 1 bits on a machine
word. To be more specific, we write

x =
i=K−1∑
i=0

xi r
i (19)

such that

• either xK−1 = r and we have xK−1 = · · · = x0 = 0, thus x = rK ,

• or xK−1 < r and we have 0 ≤ xi < r for all i = 0 · · · (K − 1).

Note that M/N ≤ ` ≤M/N + 1.
As an exmaple, consider r = 216−28 and the prime p = r4+1 = 18160198153666560001.

On 64-bits, the coefficients xi and yi will fit on 16-bits.

10

We will show how to compute an addition modulo a sparse radix prime number.
Let x and y be two elements of Z/pZ. We represent them as

∑
i xir

i and
∑

i yir
i.

Ideally, we want to compute x + y using only the smallest number of available
operations (arithmetic operations (add, sub) and logical operations (and, or, xor, shift)
on the targeted machine. The näıve algorithm for adding x and y would simply compute
x+y as machine integers, then handling the carries for each coefficient. But this latter
sweep would require O(K) operations.

We describe now a technique to overcome this difficulty. We assume r = 2M/K −2u

and thus ` = M/K. Let us consider

a =
∑
i

(2M/K − r) · 2iM/K .

Let us perform the addition x + a using the binary representation described above.
Define x′ = x+ a. Since xi < r holds (except may be for i = K − 1) we have

xi + 2M/K − r < 2M/K . (20)

Hence, there is no overlap between two consecutive slots of ` bits during the computa-
tion of x′. Now, let us consider z′ = x′ + y. We have

xi + yi ≥ r ⇐⇒ x′i + yi ≥ 2M/K . (21)

We conclude that the i-th and (i+ 1)-th (M/K)-bit slots (in the binary representation
of x and y) overlap with if and only if xi + yi ≥ r holds. Moreover, if xi + yi ≥ r holds,
then the low M/K-bits of x′i + yi represent exactly xi + yi mod r.

The next step is to detect the slots where a carry has been propagated. In order to
do it, we just have to look at the first bit of each slot of z′ and compare with xor(x′,y).
Indeed, xor(x′,y) gives a “carry-less addition”. Then, we just need to use some mask
to retrieve the slots for which the first bit of the next one has not changed, do a shift
and a subtraction.

Algorithm 3 summarizes this addition process:

Algorithm 3 Addition in R

1: procedure Add(x = (x0x1...xK−1), y = (y0y1...yK−1))
2: x′ = x+ a . a =

∑
i(2

16 − r) · 216i

3: u = xor(x′, y)
4: v = x′ + y
5: carries = xor(u, v)
6: carries = and(not(carries), Ones) . Ones =

∑
i 216

7: carries = rshift(carries, 16)
8: return v − carries
9: end procedure

In the algorithm below, we skipped an important point, which is related to the
eventual carry due to the (K − 1)-th slot. Indeed, if xK−1 + yK−1 ≥ r, then we have
x + y = rK + s, with 0 ≤ s < rK . Since rK = −1 mod p, we have to propagate the
carry (namely −1) to the first coefficient.

But we have to be careful. Indeed, in our example, 216 − r = 28. If the first
coefficient is equal to 28 or 0, then propagating the last carry directly could give an
incorrect result. If the first coefficient is equal to 28, it means y0 = x0 = 0, which
implies that there is no carry propagated on the next slot. According to the previous

11

algorithm, we will have to remove 28, but since we propagated the ”last carry”, we
would have 28−1−28, and this implies that the representation will not be correct. We
have a similar phenomenon if u0 = 0.

This is why we have to handle those particular cases by comparing v0 to 28 and 0.
Since the probability that v0 is equal to one those is very low, the impact of branch
misprediction is very low.

Let us show how to compute the multiplication of some x by a power of r. Indeed,
this operation has to be as fast as possible, since the complexity analysis of Frer’s im-
proved algorithm relies on this property. We will take as an example the multiplication
by r. The multiplication by other powers of r can be easily deduced from this example.

The multiplication by r gives us :

x · r =
∑
i

xir
i+1 =

K−2∑
i=0

xir
i+1 + xK−1r

K =
K−2∑
i=0

xir
i+1 − xK−1

In other terms, the multiplication by r can be done with a ”shift” and a subtraction
in r-radix. But since the subtraction is very specific, we don’t have to compute a full
subtraction (like the full addition we saw below). Let j be the smallest i in

∑K−2
i=0 xir

i+1

such that xi > 0. Observe that we clearly have in Z:

0 = r + (r − 1) · r + · · ·+ (r − 1) · rj−1 − rj

Define z =
∑j

i=0 zir
j with z0 := r, z1 := · · · := zj−1 := r − 1 and zj = −1. Now we

compute y := z +
∑K−2

i=0 xir
i+1 followed by the usual subtraction for y − xK−1.

Given x and y, computing the multiplication of those elements represented in radix
r requires to pad zeros between coefficients, in order to use Kronecker Substitution.
For instance, if x =

∑
i xi · ri, each xi will be followed by dlog2 re+ dlog2Ke zeros.

Once we have computed z = x · y, we have to compute the correct representation
of z in radix r. We can using the fact that r is sparse in order to compute several
coefficients at once.

Suppose r = 216 − 28. If we consider the first coefficient z0 of z, then we can cut
z0 into two parts: z0 = a + 216b, with a < 216. We want to represent z0 like this:
z0 = a′ + r · b′ with a′ < r. Since 216 = r + 28, we have z0 = (a+ 28b) + b · r. Suppose
we can represent (a + 28b) like c + r · d, with c < r, then z0 = c + r · (d + b). This
means that we can apply recursively the previous routine on the successive remainders
we get.

Here is the pseudo-code we apply :

whi l e input >= r
high = input & (2ˆ32−2ˆ16)
low = input & (2ˆ16−1)
high >>=8
low = low+high
input = low

The first line in the loop body allows to retrieve the high part of the input, and the
second retrieves the low part. We apply this routine until low fits on 16 bits. We then
might have to subtract r to the final remainder.

12

6 Generating 1D FFT code

6.1 Two strategies

Two strategies have been explored in order to implement the Fast Fourier Transform.
The first strategy consisted to implement the Radix-two Cooley-Tukey Number Theo-
retic transform.

The radix-two Cooley-Tukey transform relies on the factorization of the size of the
input vector. We will admit that this size N is a power of two 2k. Then the Cooley-
Tukey algorithm appears to be the algorithm describing the usual FFT, which consist
in separating odd and even part of the input vector, and apply recursively the algorithm
on the two parts. Since we divide by 2 the size of the input at each level, we will have
k level of recursions.

a0 a4 a8 a12a1 a5 a9 a13a2 a6 a10 a14a3 a7 a11 a15

On Figure above, we have the butterfly graph for a 16-point FFT, using the radix-2
Cooley-Tukey algorithm. The input is the array [a0 a1 · · · a15]. A butterfly graph
describes the operations performed on each level of recursion. The basic operation is
the following :

a0 a1

The red line illustrates the fact that we multiply a1 by a root of unity. In other
terms, according to the whole Butterfly graph for 16 points, we have 24 multiplications
for the whole algorithm. Indeed, the first level does not contain any multiplication
because those Butterflies correspond to multipliation by 1, which is clearly cheap.

Actually, we can further refine, since some of the multiplications on lower levels of
FFT are multiplications by 1 as well:

13

a0 a4 a8 a12a1 a5 a9 a13a2 a6 a10 a14a3 a7 a11 a15

In conclusion, we have 4 + 6 + 7 = 17 multiplications in the classical algorithm, and
4 levels of recursion.

Let us consider 2j = O(k) the smallest power of two greater than k. We factorize
the size N like N = 2j · 2k−j . We cut the input vector of the FFT in 2j pieces of
size 2k−j on which we apply recursively the algorithm. Then we multiply by twiddle
factors, and we compute 2k−j transforms of size 2j . Hence, the transforms of size 2j

should be regarded as the base case.
Here is the formula associated to this decomposition, if the input vector is a and

the output is b :

bi′2k−j+i =
2j−1∑
l=0

2k−j−1∑
l′=0

ω(i′2k−j+i)(l′2j+l)al′2j+l

=

2j−1∑
l=0

ω2l−jj′l ωil
2k−j−1∑
l′=0

ω(2jil′)al′2j+l︸ ︷︷ ︸
inner transforms︸ ︷︷ ︸

coefficients of the outer transforms︸ ︷︷ ︸
outer transforms

In the above a and b have size N ; j and k are as above: 0 ≤ i < 2k−j and 0 ≤ i′ < 2j .
We can rewrite the algorithm seen in the background this way :

14

Second Strategy FFT

procedure FFT((α0α1...αN−1), ω, N = 2k−j · 2j , Ω = ω2k−j
)

for 0 ≤ l < 2j − 1 do . Inner transforms
for 0 ≤ l′ < 2k−j − 1 do

γ[l][l′] = αl′2j+l

end for
c[l] = FFT (γ[l], ωK , 2k−j ,Ω)

end for
for 0 ≤ i < 2k−j − 1 do . Outer transforms

for 0 ≤ l < 2j − 1 do
δ[i][l] = c[l][i] ∗ ωil . Computation of coefficients

end for
d[i] = FFT (δ[i], ω2k−j

, 2j ,Ω)
for 0 ≤ i′ < 2j − 1 do

βi′2k−j+i = d[i][i′]
end for

end for
return b = (β0, ..., βN−1)

end procedure

In the last strategy, we will have logkN levels of recursion. At each level, we
multiply by some twiddle factors and we compute small-size FFT. Somehow, log2N −
logkN =

(
1− 1

log2 k

)
log2N level of recursions in the first strategy have been exchanged

against small-size FFT, reusing the same roots of unity, which is better on architectures
preferring repetitive tasks.

a0 a4 a8 a12a1 a5 a9 a13a2 a6 a10 a14a3 a7 a11 a15

In the picture below, we represent on 2 level of recursions the small 4-points but-
terflies by the same color. In other terms, We can see 2 level of recursions, on which
we compute each time 4 small butterflies. Each butterfly is a 4-point FFT, so for each
of them, we have 1 multiplication according to the previous analysis. The product by
twiddle factors happens in the middle of the previous picture. 1/4-th of those twiddle
factors are multiplication by one. Among the other twiddle factors, 3 of them will be
multiplication by one. This means we have 4 · 3− 3 = 9 multiplications. We have 4 + 4
4-points butterflies, which means we have 17 multiplications for the whole algorithm.

15

6.2 Complexity Analysis

Let us perform the complexity analysis of the previous algorithms. We will compute
the number of multiplications for each version.

For the first version, let us say we have an input vector of size N = 2k. We
will have then k level of recursions. On the first level of recursion, there will not be
any multiplication. On the second level of recursion, we will have N/2 multiplications,
among which half will be multiplications by one : we will have N/4 real multiplications.
On the third level of recursion, 3/4-th of the N/2 multiplications will be real ones.

Here is the formula we can deduce, if M(N) is the number of multiplications :

M(N) = N
2

(
1
2 + 3

4 + 7
8 + · · ·+ N−1

N

)
= N

2

(
k − 1− 1

2 −
1
4 −

1
8 − · · · −

1
N

)
= N

2

(
k − 1− 1 + 1

2k−1

)
= N

2

(
k − 2 + 2

N

)
= N

2 k + 1−N

Now let us analyse the number of multiplications for the algorithm factorizing N
like 2k−j · 2j . We have k

j level of recursions. On each level of recursion, we have

2k−j butterflies of size 2j . According to the previous analysis, those butterflies require
j2j−1 +1−2j multiplications. Between each level of recursions, we have multiplications
by twiddle factors. At each level of multiplication by twiddle factors, we will have one
chunk of size N/2j of multiplications by one.

For the other chunks, we have to remove the first multiplication which is a mul-
tiplication by one. After the first level of the FFT butterfly, we will have N

22j
sets in

which we have 2j chunks for the twiddle factors. The first chunk will contain only
multiplications by one as we have seen it before. The other 2j − 1 chunks will contain
one multiplication by one (the first). After the second level in the Butterfly, we will
have N

23j
sets respecting the same properties we just have seen. We can keep going

and conclude that we have to remove N
22j

(
2j − 1)

)
+ N

23j

(
2j − 1)

)
+ · · · + 1 ·

(
2j − 1

)
multiplications by one. In other words, the whole cost is :

M(N) = 2k−j kj
(
j2j−1 + 1− 2j

)
+
(
k
j − 1

)
·
(
1− 1

2j

)
N

− N
22j

(
2j − 1)

)
− N

23j

(
2j − 1)

)
− · · · − 1 ·

(
2j − 1

)
= Nk

2 + N
2j
−N − N

2j
+ 1

= Nk
2 + 1−N

If the last algorithm is implemented in a naive way, it should be as fast as the
previous algorithm. But since the multiplications in the small butterflies are supposed
to be cheaper, we can assume that the leading term Nk

2 grows more slowly than in the
first analysis.

We can describe the binary complexity for each algorithm. We will assume we work
over Z/pZ. b will describe the number of bits of p. We will show in this section that we
fall in the Frer class for the second strategy, relying on the Bluestein’s chirp transform.

Let us design by M(k) the bit complexity for multiplying two integers of k-bits.
Then, for the first strategy, we can write the (multiplicative) bit complexity C(N, b)
like this:

C(N, b) =

(
N

2
k + 1−N

)
·M(b)

16

Indeed, we have computed the number of multiplications in the first strategy and
those multiplications are made over Z/pZ.

In the second strategy, we can use the Bluestein’s chirp transform to analyse the
complexity. The Bluestein’s chirp transform converts the computation of a P -points
FFT in a multiplication of polynomials of degree P in variable x modulo xP − 1. This
way, the binary complexity of a P -points FFT over Z/pZ is at most M(P · b). We will
apply this idea to the small butterflies.

The complexity can be rewritten like this :

C(N, b) = M(2j · b)2k−j +
((

k
j − 1

)
·
(
1− 1

2j

)
N − N

2j
+ 1
)
·M(b)

= 2k−j2jb(j + log b)2O(log∗(2jb)) +
((

k
j − 1− k

j2j

)
·N + 1

)
b log b2O(log∗(b))

= Nb(j + log b)2O(log∗(2jb)) +
((

k
j − 1− k

j2j

)
·N + 1

)
b log b2O(log∗(b))

We are free to choose j and p; and we do so. If 2j = k and b = O(k), the

leading term in the first case will be Nk2

2 log k2O(log∗ k) and in the second case, it will

be O(Nk
2

2 2O(log∗ k)), which is better. We introduced here the complexity of Frer’s
algorithm to estimate the value of M(k). To conclude, since we have an input of
n = Nb = O(Nk) bits, we end with a complexity of the form O(n log n2O(log∗ k)).

Let us explain now the principle of Bluestein’s chirp transform.
The problem is to compute the FFT of P points xk. We assume we work in

R = Z/pZ containing a 2P -th root of unity ω.
We want to compute x̂k where :

x̂k =

P−1∑
i=0

xi · ω2ik

We observe that we can express this sum as a convolution product :

x̂k = ω−k
2
P−1∑
i=0

(
xiω
−i2
)
ω(k−i)2

If we consider the sequences ai = xiω
−i2 and bi = ωi

2
, the x̂k are obtained through

the following convolution product :

x̂k = ω−k
2
P−1∑
i=0

aibk−i

In conclusion, we can get the vector X = (x0, x1, · · · , xP−1) doing the multiplication
of the polynomials

∑P−1
i=0 aix

i and
∑P−1

i=0 bix
i modulo xP − 1 and by multiplying the

coefficients x̃i obtained by ω−i
2
.

6.3 Implementation

Both strategy have been implemented using Python code generating C code. The
automatic generation of code is meant to be adaptive to different architectures, for
which for instance the cache size varies, or the number of registers.

Indeed, in order to make the Fast Fourier Transform cache-friendly, the approach
consisting in using a recursive algorithm, followed by the iterative one once the size of

17

the input vector fits in a cache has been explored. This is why depending on the size
of the cache for a given architecture, the implementation should adapt itself.

Let us describe the implementation for the first strategy. The recursive function
calls itself twice, on the even and the odd parts of the input vector. Once this is done,
we compute the small 2-points FFT, by unrolling a for-loop.

Algorithm 4 Multiplication by twiddle factors

for 0 ≤ i ≤ n/2,i = i+ 8 do
A[i+ n/2] = A[i+ n/2] ∗ ωi
A[i+ 1 + n/2] = A[i+ 1 + n/2] ∗ ωi+1

A[i+ 3 + n/2] = A[i+ 2 + n/2] ∗ ωi+2

A[i+ 3 + n/2] = A[i+ 3 + n/2] ∗ ωi+3

A[i+ 4 + n/2] = A[i+ 4 + n/2] ∗ ωi+4

A[i+ 5 + n/2] = A[i+ 5 + n/2] ∗ ωi+5

A[i+ 6 + n/2] = A[i+ 6 + n/2] ∗ ωi+6

A[i+ 7 + n/2] = A[i+ 7 + n/2] ∗ ωi+7

u = A[i] +A[i+ n/2]
v = A[i]−A[i+ n/2]
A[i] = u
A[i+ n/2] = v
· · ·
u = A[i+ 7] +A[i+ 7 + n/2]
v = A[i+ 7]−A[i+ 7 + n/2]
A[i+ 7] = u
A[i+ 7 + n/2] = v

end for

As we can see in Algorithm 4, we compute in a row 8 multiplications (can be
adapted depending on the number of registers) and we compute the additions and
the subtractions immediately after, so that we reuse the content of the registers. We
have to compute some multiplications in a row in order to use efficiently the pipeline.
Indeed, since those multiplications are independent, we can assume that at the end of
the multiplications, the first one is finished.

The iterative part is made using blocks. Indeed, instead of computing only the first
2-points FFT for the first level, we compute directly 16-points FFT. This way, we use
efficiently the registers. The multiplications are done successively, in order to use the
pipeline. 16 is the parameter usually used, but it can be adapted, depending on the
architecture, through the python code.

For the next levels, we also use a block strategy, but the root of unity used inside
those blocks has an increasing order, depending on the level.

In the second strategy, the iterative part is straight-forward. It is enough to compute
the blocks like it has been described previously. We have to compute the twiddle factors
between each level in the butterfly.

For the recursive part, we have to reuse the way the first strategy that has been
implemented, but in an iterative way for the part computing the small butterflies. More
details are given in Appendix B.

18

7 Experimentations

7.1 One dimensional FFT

We will show here the influence of the different parameters of the implementation.
In the first time, we can compare the naive implementation of the FFT (which was
iterative) with the first strategy described in the previous section. We will show the
differences in terms of cycles and cache-misses. The threshold used has the value 1024
: it corresponds to the size after which we call the iterative FFT.

The parameter N is the size of the input vector given to the FFT.

N 223 224 225 226 227 228

Old FFT 4.08s 8.35s 16.93s 36.67s 74.74s 152.65s

1st Strat. 1.27s 2.69s 5.70s 12.00s 24.80s 53.23s

As we can see above, we win a factor greater than 3 by adopting a more cache-
friendly strategy. These timings have been made on the following machine : AMD
Opteron(tm) Processor 6168. Let us compare the number of cycles and the cache-
misses :

N old cache-misses new cache-misses old cycles new cycles

223 264, 859 240, 404 9, 024, 307, 443 3, 907, 597, 584

224 455, 035 437, 628 18, 393, 738, 625 8, 099, 174, 053

225 842, 998 836, 671 37, 211, 499, 103 16, 783, 017, 148

226 1, 727, 444 1, 626, 975 79, 700, 922, 054 34, 693, 748, 735

227 3, 489, 699 3, 245, 469 162, 189, 284, 924 70, 432, 997, 418

228 7, 171, 002 6, 616, 190 330, 219, 164, 322 148, 290, 744, 335

We ran the implementation on another machine : Intel(R) Xeon(R) CPU X5650 @
2.67GHz. The timings on the Intel Machine are given in Appendix C.

Let us now compare the two strategies described before. By default, for the second
strategy, we use butterflies of size 8, which means we are compute a radix-8 FFT.

N 223 224 225 226 227 228

1st Strat. 1.27s 2.69s 5.70s 12.00s 24.80s 53.23s

2nd Strat. 1.36s 2.90s 6.22s 13.06s 27.61s 58.24s

We observe that the second strategy is not as fast in practice as the first one.
Indeed, it is slightly slower by 10 percent.

Let us compare the cache-misses and the cycles :

N 1st cache-misses 2nd cache-misses 1st cycles 2nd cycles

223 240, 404 433, 467 3, 907, 597, 584 3, 898, 771, 724

224 437, 628 778, 403 8, 099, 174, 053 8, 097, 450, 265

225 836, 671 1, 473, 226 16, 783, 017, 148 16, 833, 741, 258

226 1, 626, 975 2, 954, 530 34, 693, 748, 735 35, 257, 722, 765

227 3, 245, 469 5, 890, 483 70, 432, 997, 418 73, 057, 301, 199

228 6, 616, 190 11, 855, 501 148, 290, 744, 335 150, 736, 731, 538

19

We deduce from the previous array that the number of cache-misses has been almost
doubled in the second strategy.

Let us observe the influence of the value of HTHRESHOLD on the first strategy’s
timings. These timings are made on the AMD architecture.

N 223 224 225 226 227 228

HTHRESHOLD=512 1.29s 2.56s 5.87s 12.34s 25.06s 54.74s

HTHRESHOLD=1024 1.27s 2.69s 5.70s 12.00s 24.80s 53.23s

HTHRESHOLD=2048 1.34s 2.86s 6.07s 12.87s 26.35s 56.53s

It seems according to what we can see above that the optimal value of the HTHRESH-
OLD on AMD machines is 1024. Let us compare the cache-misses :

N HTHRESHOLD=512 HTHRESHOLD=1024 HTHRESHOLD=2048

223 807, 951 240, 404 368, 185

224 1, 545, 191 437, 628 649, 700

225 3, 026, 848 836, 671 1, 243, 836

226 6, 096, 304 1, 626, 975 2, 518, 562

227 12, 035, 181 3, 245, 469 4, 966, 387

228 24, 147, 545 6, 616, 190 9, 803, 546

We observe that the number of cache-misses is optimal in the case HTHRESH-
OLD=1024.

To conclude, we implemented the improvement to the Montgomery multiplication.
It seems that this idea does not give better timings, compared to the original Mont-
gomery multiplication. We give here the running time on the AMD architecture :

N 223 224 225 226 227 228

2nd Strat. 1.36s 2.90s 6.22s 13.06s 27.61s 58.24s

New Montg. Mult. 1.54s 3.43s 7.36s 15.12s 32.48s 68.89s

20

Appendix A. References

References

[BPA] Bpas library. http://www.bpaslib.org.

[Für07] Martin Fürer. Faster integer multiplication. In David S. Johnson and Uriel
Feige, editors, STOC, pages 57–66. ACM, 2007.

[Für09] Martin Fürer. Faster integer multiplication. SIAM J. Comput., 39(3):979–
1005, 2009.

[HK81] Jia-Wei Hong and H. T. Kung. I/o complexity: The red-blue pebble game.
In STOC, pages 326–333. ACM, 1981.

[HvdHL14] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. Even faster
integer multiplication. CoRR, abs/1407.3360, 2014.

[Int] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual.
http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-optimization-manual.pdf.

[Knu97] Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.):
seminumerical algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[Mon85] P. L. Montgomery. Modular multiplication without trial division. Mathe-
matics of Computation, 44(170):519–521, 1985.

Appendix B. Implementation of the recursive FFT

We will describe here how we implemented the multiplication by twiddle factors and
the computation of the small butterflies in the second strategy of subsection 6.3.

If we work in 16-radix FFT, and we have an input vector of size N , we will at first
cut this vector in 16 chunks of size N/16. Let us call these chunks (Ci)i∈[0,;15].

We compute the multiplication by twiddle factors for each of those chunks. For
cij ∈ Ci, we multiply cij by ωij . Once we have multiplied the chunks C0 and C8, we
can add and subtract the elements of those chunks.

C0 C4 C8 C12C1 C5 C9 C13C2 C6 C10 C14C3 C7 C11 C15

We can see the algorithm computing those butterflies here :

21

Multiplication by twiddle factors

procedure Butterfly(C0,C8)
for 0 ≤ i ≤ N/8,i = i+ 8 do

C8[i] = C8[i] ∗ ω8·i

C8[i+ 1] = C8[i+ 1] ∗ ω8·(i+1)

C8[i+ 2] = C8[i+ 2] ∗ ω8·(i+2)

C8[i+ 3] = C8[i+ 3] ∗ ω8·(i+3)

C8[i+ 4] = C8[i+ 4] ∗ ω8·(i+4)

C8[i+ 5] = C8[i+ 5] ∗ ω8·(i+5)

C8[i+ 6] = C8[i+ 6] ∗ ω8·(i+6)

C8[i+ 7] = C8[i+ 7] ∗ ω8·(i+7)

u = C0[i] + C8[i]
v = C0[i]− C8[i]
C0[i] = u
C8[i] = v
· · ·
u = C0[i+ 7] + C8[i+ 7]
v = C0[i+ 7]− C8[i+ 7]
C0[i+ 7] = u
C8[i+ 7] = v

end for
end procedure

We apply the algorithm Butterfly to the pairs (Ci, Ci+8) for i ∈ [0; 8[. We then
apply the same strategy but using roots of unity of lower order, in order to compute
the 16-points FFT.

Concretely, we apply for decreasing values of u the following algorithm :

22

Multiplication by twiddle factors

procedure Butterfly(Ck,Ck+u,u)
for 0 ≤ i ≤ N/8,i = i+ 8 do

v = k mod u
Ck+u[i] = Ck+u[i] ∗ ω

uvN
16

Ck+u[i+ 1] = Ck+u[i+ 1] ∗ ω
uvN
16

Ck+u[i+ 2] = Ck+u[i+ 2] ∗ ω
uvN
16

Ck+u[i+ 3] = Ck+u[i+ 3] ∗ ω
uvN
16

Ck+u[i+ 4] = Ck+u[i+ 4] ∗ ω
uvN
16

Ck+u[i+ 5] = Ck+u[i+ 5] ∗ ω
uvN
16

Ck+u[i+ 6] = Ck+u[i+ 6] ∗ ω
uvN
16

Ck+u[i+ 7] = Ck+u[i+ 7] ∗ ω
uvN
16

u = Ck[i] + Ck+u[i]
v = Ck[i]− Ck+u[i]
Ck[i] = u
Ck+u[i] = v
· · ·
u = Ck[i+ 7] + Ck+u[i+ 7]
v = Ck[i+ 7]− Ck+u[i+ 7]
Ck[i+ 7] = u
Ck+u[i+ 7] = v

end for
end procedure

We compute the previous algorithm by increasing k first, then by decreasing u. At
first, k lives in 0, 1, 2, 3, 8, 9, 10, 11, then in 0, 1, 4, 5, 8, 9, 12, 13 and finally in 0, 2, 4, · · · , 14.
u decreases by a factor 2, starting from 8, until reaching 2.

Computation of small Butterflies

for 3 ≥ u ≥ 1 do
for 0 ≤ j < 16/2u do

for 0 ≤ i < 2u−1 do
Butterfly(Ci+j·2u ,Ci+2u−1+j·2u ,2u)

end for
end for

end for

Appendix C. Additional timings on Intel(R) Xeon(R) CPU
X5650 @ 2.67GHz

Let us compare the first strategy with the old implemented of the one dimensional FFT
in the BPAS Library on the Intel architecture :

N 223 224 225 226 227 228

Old FFT 2.86s 6.04s 12.45s 25.83s 53.15s 108.96s

1st Strat. 0.67s 1.42s 3.02s 6.38s 13.46s 28.32s

The main observation here is that we just divided by 2 the first timings we had. If
we focus on the amount of cache-misses and cycles, we have more interesting statistics

23

:

N old cache-misses new cache-misses old cycles new cycles

223 29, 395, 618 15, 665, 846 9, 800, 035, 659 3, 326, 946, 112

224 57, 616, 488 32, 216, 102 20, 568, 943, 112 6, 955, 646, 130

225 115, 551, 894 66, 554, 828 42, 265, 440, 870 14, 334, 505, 067

226 231, 737, 115 136, 596, 768 87, 372, 621, 630 29, 705, 443, 156

227 465, 328, 833 281, 304, 231 179, 345, 750, 087 61, 548, 074, 907

228 932, 169, 367 578, 830, 627 366, 803, 917, 315 127, 356, 990, 728

We notice that the number of cache-misses has decreased by a factor 2 for the Intel
machine.

Let us see what happens on the Intel architecture when we compare the first and
the second strategy implemented :

N 223 224 225 226 227 228

1st Strat. 0.67s 1.42s 3.02s 6.38s 13.46s 28.32s

2nd Strat. 0.71s 1.52s 3.23s 6.83s 14.43s 30.38s

N 1st cache-misses 2nd cache-misses 1st cycles 2nd cycles

223 15, 665, 846 12, 466, 989 3, 326, 946, 112 3, 306, 680, 210

224 32, 216, 102 23, 933, 208 6, 955, 646, 130 6, 850, 091, 891

225 66, 554, 828 46, 836, 535 14, 334, 505, 067 14, 214, 290, 327

226 136, 596, 768 112, 604, 760 29, 705, 443, 156 29, 812, 712, 012

227 281, 304, 231 218, 119, 524 61, 548, 074, 907 61, 681, 553, 133

228 578, 830, 627 426, 335, 857 127, 356, 990, 728 127, 411, 046, 347

It seems that on the Intel machine, the amount of cache-misses has decreased. But
the timings are still slower for the second strategy.

Appendix D. Assembly routine for the Montgomery Mul-
tiplication

We have below the X86 assembly routine written for the Montgomery Multiplication
in the BPAS library :

i n l i n e s f i x n MontMulModSpe OPT3 AS GENE INLINE(s f i x n u , s f i x n v){
asm(” mulq %2\n\ t ”

”movq %%rax,%% r s i \n\ t ”
”movq %%rdx,%%r d i \n\ t ”
” imulq %3,%%rax\n\ t ”
”mulq %4\n\ t ”
”add %%r s i ,%%rax\n\ t ”
”adc %%rdi ,%%rdx\n\ t ”
”subq %4,%%rdx\n\ t ”
”mov %%rdx,%%rax\n\ t ”
” sar $63,%%rax\n\ t ”
”andq %4,%%rax\n\ t ”

24

”addq %%rax,%%rdx\n\ t ”
: ”=d” (u)
: ”a ”(u) ,”rm”(v) ,” b”(INV PRIME) ,” c ”(MY PRIME)
: ” r s i ” ,” r d i ”) ;

r e turn u ;
}

25

