
CS3101b – Theory of High-performance
Computing

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS3101

Plan

1 Hardware Acceleration Technologies

2 Multicore Programming: Code Examples

3 Distributed computing with Julia

4 CS3101 Course Outline

Hardware Acceleration Technologies

Plan

1 Hardware Acceleration Technologies

2 Multicore Programming: Code Examples

3 Distributed computing with Julia

4 CS3101 Course Outline

Hardware Acceleration Technologies

Electronic Numerical Integrator And Computer (ENIAC). The first
general-purpose, electronic computer. It was a Turing-complete, digital

computer capable of being reprogrammed and was running at 5,000 cycles
per second for operations on the 10-digit numbers.

Hardware Acceleration Technologies

The IBM Personal Computer, commonly known as the IBM PC
(Introduced on August 12, 1981).

Hardware Acceleration Technologies

The Pentium Family.

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Core Core Core Core

L1
inst

L1
data

L1
ins

L1
data

L1
ins

L1
data

L1
ins

L1
data

L2 L2

Main Memory

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

Hardware Acceleration Technologies

Once uopn a time, every thing was slow in a computer . . .

Multicore Programming: Code Examples

Plan

1 Hardware Acceleration Technologies

2 Multicore Programming: Code Examples

3 Distributed computing with Julia

4 CS3101 Course Outline

Multicore Programming: Code Examples

Cilk and CilkPlus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Cilk has been integrated into Intel C compiler under the name
CilkPlus, see http://www.cilk.com/

CilkPlus (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting fork-join parallelism

Both Cilk and CilkPlus feature a provably efficient work-stealing
scheduler.

CilkPlus provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

CilkPlus includes the Cilkscreen race detector and the Cilkview

performance analyzer.

Multicore Programming: Code Examples

Nested Parallelism in CilkPlus

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

CilkPlus keywords cilk spawn and cilk sync grant permissions
for parallel execution. They do not command parallel execution.

Multicore Programming: Code Examples

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

Cilk++’s scheduler maps strands onto processors dynamically at
runtime.

Multicore Programming: Code Examples

The CilkPlus Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional
Compiler

y b();
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional
Regression Tests

Parallel
Regression Tests

Runtime
System

4

Reliable Single-
Threaded Code

Exceptional
Performance

Reliable Multi-
Threaded Code

Multicore Programming: Code Examples

Benchmarks for the parallel version of the divide-n-conquer mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

Multicore Programming: Code Examples

Benchmarks using Cilkview

Distributed computing with Julia

Plan

1 Hardware Acceleration Technologies

2 Multicore Programming: Code Examples

3 Distributed computing with Julia

4 CS3101 Course Outline

Distributed computing with Julia

Julia’s message passing principle

Julia’s message passing

Julia provides a multiprocessing environment based on message
passing to allow programs to run on multiple processors in shared or
distributed memory.

Julias implementation of message passing is one-sided:
• the programmer needs to explicitly manage only one processor in a

two-processor operation
• these operations typically do not look like message send and message

receive but rather resemble higher-level operations like calls to user
functions.

Distributed computing with Julia

Remote references and remote calls

Two key notions: remote references and remote calls

A remote reference is an object that can be used from any processor
to refer to an object stored on a particular processor.

A remote call is a request by one processor to call a certain function
on certain arguments on another (possibly the same) processor. A
remote call returns a remote reference.

How remote calls are handled in the program flow

Remote calls return immediately: the processor that made the call
can then proceeds to its next operation while the remote call happens
somewhere else.

You can wait for a remote call to finish by calling wait on its remote
reference, and you can obtain the full value of the result using fetch.

Distributed computing with Julia

A first example of parallel reduction

julia> @everywhere function count_heads(n)

c::Int = 0

for i=1:n

c += randbool()

end

c

end

julia> a = @spawn count_heads(100000000)

RemoteRef(7,1,31)

julia> b = @spawn count_heads(100000000)

RemoteRef(2,1,32)

julia> fetch(a)+fetch(b)

99993168

This simple example demonstrates a powerful and often-used parallel
programming pattern: reductuon.
Many iterations run independently over several processors, and then their
results are combined using some function.

Distributed computing with Julia

Distributed arrays and parallel reduction (1/4)

[moreno@compute-0-3 ~]$ julia -p 5

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "help()" to list help topics

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.2.0-prerelease+3622

_/ |__’_|_|_|__’_| | Commit c9bb96c 2013-09-04 15:34:41 UTC

|__/ | x86_64-redhat-linux

julia> da = @parallel [2i for i = 1:10]

10-element DArray{Int64,1,Array{Int64,1}}:

2

4

6

8

10

12

14

16

18

20

Distributed computing with Julia

Distributed arrays and parallel reduction (2/4)

julia> procs(da)

4-element Array{Int64,1}:

2

3

4

5

julia> da.chunks

4-element Array{RemoteRef,1}:

RemoteRef(2,1,1)

RemoteRef(3,1,2)

RemoteRef(4,1,3)

RemoteRef(5,1,4)

julia>

julia> da.indexes

4-element Array{(Range1{Int64},),1}:

(1:3,)

(4:5,)

(6:8,)

(9:10,)

julia> da[3]

6

julia> da[3:5]

3-element SubArray{Int64,1,DArray{Int64,1,Array{Int64,1}},(Range1{Int64},)}:

6

8

10

Distributed computing with Julia

Distributed arrays and parallel reduction (3/4)

julia> fetch(@spawnat 2 da[3])

6

julia>

julia> { (@spawnat p sum(localpart(da))) for p=procs(da) }

4-element Array{Any,1}:

RemoteRef(2,1,71)

RemoteRef(3,1,72)

RemoteRef(4,1,73)

RemoteRef(5,1,74)

julia>

julia> map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da) })

4-element Array{Any,1}:

12

18

42

38

julia>

julia> sum(da)

110

Distributed computing with Julia

Distributed arrays and parallel reduction (4/4)

julia> reduce(+, map(fetch,

{ (@spawnat p sum(localpart(da))) for p=procs(da) }))

110

julia>

julia> preduce(f,d) = reduce(f,

map(fetch,

{ (@spawnat p f(localpart(d))) for p=procs(d) }))

methods for generic function preduce

preduce(f,d) at none:1

julia>

julia> preduce(min, da)

2

julia>

julia> preduce(max, da)

20

Distributed computing with Julia

Producer-consumer scheme example

function producer()

produce("start")

for n=1:2

produce(2n)

end

produce("stop")

end

To consume values, first the producer is wrapped in a Task, then consume is called
repeatedly on that object:

ulia> p = Task(producer)

Task

julia> consume(p)

"start"

julia> consume(p)

2

julia> consume(p)

4

julia> consume(p)

"stop"

CS3101 Course Outline

Plan

1 Hardware Acceleration Technologies

2 Multicore Programming: Code Examples

3 Distributed computing with Julia

4 CS3101 Course Outline

CS3101 Course Outline

Course Topics

Week 1: Course presentation and orientation

Week 2-3: Distributed and parallel computing with the Julia interactive
system

Week 4-5: Multicore architectures and the fork-join multithreaded
parallelism

Week 6: Analyzing the cache complexity of algorithms

Weeks 7-8: Cache memories and their impact on the performance of
computer programs

Week 9-10: Fundamental models of concurrent computations (PRAM
and its variants)

Week 11: Highly data parallel architecture models (pipeline, stream,
vector, etc.)

Weeks 12: Many-core processors (GPGPUs) with an overview of
many-core programming

Weeks 13: Multi-processed parallelism, message passing: an overview

CS3101 Course Outline

About this course

Prerequisites: Computer Science 2101A/B or 2211A/B.

Objectives: introducing students to the necessary theoretical
background (architectures, models of computations, algorithms) in
order to understand and practice high-performance computing.

This course can be seen as extension of other CS courses such as
3331A - Foundations of Computer Science I 3305B - Operating
Systems 3340B - Analysis of Algorithms I 3350B - Computer
Architecture, providing the parallel dimension of Today’s Computer
Science.

It will become next year a preliminary requirement to 4402B -
Distributed and Parallel Systems.

We will cover a large of materials and we will have tutorial every week.

	Hardware Acceleration Technologies
	Multicore Programming: Code Examples
	Distributed computing with Julia
	CS3101 Course Outline

