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Hardware Acceleration Technologies

Electronic Numerical Integrator And Computer (ENIAC). The first
general-purpose, electronic computer. It was a Turing-complete, digital

computer capable of being reprogrammed and was running at 5,000 cycles
per second for operations on the 10-digit numbers.
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The IBM Personal Computer, commonly known as the IBM PC
(Introduced on August 12, 1981).
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The Pentium Family.
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Once uopn a time, every thing was slow in a computer . . .
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Multicore Programming: Code Examples

Cilk and CilkPlus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Cilk has been integrated into Intel C compiler under the name
CilkPlus, see http://www.cilk.com/

CilkPlus (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting fork-join parallelism

Both Cilk and CilkPlus feature a provably efficient work-stealing
scheduler.

CilkPlus provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

CilkPlus includes the Cilkscreen race detector and the Cilkview

performance analyzer.
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Nested Parallelism in CilkPlus

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

CilkPlus keywords cilk spawn and cilk sync grant permissions
for parallel execution. They do not command parallel execution.
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Scheduling
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A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

Cilk++’s scheduler maps strands onto processors dynamically at
runtime.
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Benchmarks for the parallel version of the divide-n-conquer mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83
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Benchmarks using Cilkview
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Distributed computing with Julia

Julia’s message passing principle

Julia’s message passing

Julia provides a multiprocessing environment based on message
passing to allow programs to run on multiple processors in shared or
distributed memory.

Julias implementation of message passing is one-sided:
• the programmer needs to explicitly manage only one processor in a

two-processor operation
• these operations typically do not look like message send and message

receive but rather resemble higher-level operations like calls to user
functions.



Distributed computing with Julia

Remote references and remote calls

Two key notions: remote references and remote calls

A remote reference is an object that can be used from any processor
to refer to an object stored on a particular processor.

A remote call is a request by one processor to call a certain function
on certain arguments on another (possibly the same) processor. A
remote call returns a remote reference.

How remote calls are handled in the program flow

Remote calls return immediately: the processor that made the call
can then proceeds to its next operation while the remote call happens
somewhere else.

You can wait for a remote call to finish by calling wait on its remote
reference, and you can obtain the full value of the result using fetch.
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A first example of parallel reduction

julia> @everywhere function count_heads(n)

c::Int = 0

for i=1:n

c += randbool()

end

c

end

julia> a = @spawn count_heads(100000000)

RemoteRef(7,1,31)

julia> b = @spawn count_heads(100000000)

RemoteRef(2,1,32)

julia> fetch(a)+fetch(b)

99993168

This simple example demonstrates a powerful and often-used parallel
programming pattern: reductuon.
Many iterations run independently over several processors, and then their
results are combined using some function.
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Distributed arrays and parallel reduction (1/4)

[moreno@compute-0-3 ~]$ julia -p 5

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "help()" to list help topics

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.2.0-prerelease+3622

_/ |\__’_|_|_|\__’_| | Commit c9bb96c 2013-09-04 15:34:41 UTC

|__/ | x86_64-redhat-linux

julia> da = @parallel [2i for i = 1:10]

10-element DArray{Int64,1,Array{Int64,1}}:

2

4

6

8

10

12

14

16

18

20
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Distributed arrays and parallel reduction (2/4)

julia> procs(da)

4-element Array{Int64,1}:

2

3

4

5

julia> da.chunks

4-element Array{RemoteRef,1}:

RemoteRef(2,1,1)

RemoteRef(3,1,2)

RemoteRef(4,1,3)

RemoteRef(5,1,4)

julia>

julia> da.indexes

4-element Array{(Range1{Int64},),1}:

(1:3,)

(4:5,)

(6:8,)

(9:10,)

julia> da[3]

6

julia> da[3:5]

3-element SubArray{Int64,1,DArray{Int64,1,Array{Int64,1}},(Range1{Int64},)}:

6

8

10
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Distributed arrays and parallel reduction (3/4)

julia> fetch(@spawnat 2 da[3])

6

julia>

julia> { (@spawnat p sum(localpart(da))) for p=procs(da) }

4-element Array{Any,1}:

RemoteRef(2,1,71)

RemoteRef(3,1,72)

RemoteRef(4,1,73)

RemoteRef(5,1,74)

julia>

julia> map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da) })

4-element Array{Any,1}:

12

18

42

38

julia>

julia> sum(da)

110
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Distributed arrays and parallel reduction (4/4)

julia> reduce(+, map(fetch,

{ (@spawnat p sum(localpart(da))) for p=procs(da) }))

110

julia>

julia> preduce(f,d) = reduce(f,

map(fetch,

{ (@spawnat p f(localpart(d))) for p=procs(d) }))

# methods for generic function preduce

preduce(f,d) at none:1

julia>

julia> preduce(min, da)

2

julia>

julia> preduce(max, da)

20
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Producer-consumer scheme example

function producer()

produce("start")

for n=1:2

produce(2n)

end

produce("stop")

end

To consume values, first the producer is wrapped in a Task, then consume is called
repeatedly on that object:

ulia> p = Task(producer)

Task

julia> consume(p)

"start"

julia> consume(p)

2

julia> consume(p)

4

julia> consume(p)

"stop"
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Course Topics

Week 1: Course presentation and orientation

Week 2-3: Distributed and parallel computing with the Julia interactive
system

Week 4-5: Multicore architectures and the fork-join multithreaded
parallelism

Week 6: Analyzing the cache complexity of algorithms

Weeks 7-8: Cache memories and their impact on the performance of
computer programs

Week 9-10: Fundamental models of concurrent computations (PRAM
and its variants)

Week 11: Highly data parallel architecture models (pipeline, stream,
vector, etc.)

Weeks 12: Many-core processors (GPGPUs) with an overview of
many-core programming

Weeks 13: Multi-processed parallelism, message passing: an overview
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About this course

Prerequisites: Computer Science 2101A/B or 2211A/B.

Objectives: introducing students to the necessary theoretical
background (architectures, models of computations, algorithms) in
order to understand and practice high-performance computing.

This course can be seen as extension of other CS courses such as
3331A - Foundations of Computer Science I 3305B - Operating
Systems 3340B - Analysis of Algorithms I 3350B - Computer
Architecture, providing the parallel dimension of Today’s Computer
Science.

It will become next year a preliminary requirement to 4402B -
Distributed and Parallel Systems.

We will cover a large of materials and we will have tutorial every week.
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