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CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 1
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Outline of the lecture

� Syllabus
� Introduction to Pattern Recognition
� Review of Probability/Statistics
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Syllabus

� Prerequisite
� Analysis of algorithms (CS 340a/b)
� First-year course in Calculus
� Introductory Statistics (Stats 222a/b or 

equivalent)
� Linear Algebra (040a/b)

� Grading
� Midterm 30%
� Assignments 30%
� Final Project 40%

will
review



4

Syllabus
� Assignments

� bi-weekly
� theoretical or programming in Matlab or C
� no extensive programming
� may include extra credit work
� may discuss but work individually
� due in the beginning of the class

� Midterm
� open anything
� roughly on November 8
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Syllabus

� Final project
� Choose from the list of topics or design your 

own
� May work in group of 2, in which case it is 

expected to be more extensive
� 5 to 8 page report
� proposals due roughly November 1
� due December 8
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Intro to Pattern Recognition 

� Outline
� What is pattern recognition? 
� Some applications
� Our toy example
� Structure of a pattern recognition system
� Design stages of a pattern recognition system
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What is Pattern Recognition ?

� Informally
� Recognize patterns in data

� More formally
� Assign an object or an event to 

one of the several  pre-specified 
categories (a category is usually 
called a class)

tea cup
face

phone
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Application: male or female?

Perfect

PR system

male female

classes
Objects (pictures)
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Application: photograph or not?

Perfect

PR system

photo not photo

classes

Objects (pictures)
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Application: Character Recognition

� In this case, the classes are all possible 
characters: a, b, c,…., z

objects Perfect

PR system
h e l l o   w o r l d
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Application: Medical diagnostics

objects (tumors)

Perfect

PR system

cancer not cancer

classes
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Application: speech understanding

objects (acoustic signal)

Perfect

PR system
re-kig-'ni-sh&n 

� In this case, the classes are all phonemes

phonemes
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Application: Loan applications

denyapprove

25no20,0000Susan Ho

40yes10,000100,000Ann Clark

30no1,00060,000Peter White

80yes0200,000John Smith

agemarrieddebtincome

objects (people)
classes
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Our Toy Application: fish sorting

conveyer belt

sorting
chamber

salmon

sea bass

camera

classifier

fish image

fish species
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How to design a PR system?
� Collect data (training data) and classify by hand

� Preprocess by segmenting fish from background

� Extract possibly discriminating features
� length, lightness,width,number of fins,etc.

� Classifier design
� Choose model
� Train classifier on part of collected data (training data)

� Test classifier on the rest of collected data (test data) 
i.e. the data not used for training
� Should classify new data (new fish images) well

salmon salmon salmonsea bass sea bass sea bass
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Classifier design

� Notice salmon tends to be shorter than sea bass
� Use fish length as the discriminating feature
� Count number of bass and salmon of each length
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Fish length as discriminating feature
� Find the best length L threshold

fish length < L fish length > L

classify as salmon classify as sea bass

0151052salmon

5108310bass

141210842

� For example, at  L = 5, misclassified:
� 1 sea bass
� 16 salmon

� ������������	
��

	
���	�����

	
��
17
50

= 34%
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Fish Length as discriminating feature

0
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fish classified 
as salmon

fish classified 
as sea bass

� After searching through all possible thresholds L, 
the best L= 9, and still 20% of fish is misclassified
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Next Step

� Lesson learned:
� Length is a poor feature alone!

� What to do?
� Try another feature
� Salmon tends to be lighter
� Try average fish lightness
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Fish lightness as discriminating feature

� Now fish are well separated at lightness threshold 
of 3.5 with classification error of 8%
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54321



21

bass

salmon

Can do even better by feature combining
� Use both length and lightness features
� Feature vector [length,lightness]

length

lig
ht

ne
ss

decision 
boundary

� ������������	
��

	
���

decision regions
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Better decision boundary

� Ideal decision boundary, 0% classification error

length

lig
ht

ne
ss
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Test Classifier on New Data
� Classifier should perform well on new data
� Test “ideal” classifier on new data: 25% error

length

lig
ht

ne
ss
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What Went Wrong?

� Poor generalization

complicated
boundary

� Complicated boundaries do not generalize well to 
the new data, they are too “tuned” to the particular 
training data, rather than some true model which 
will separate salmon from sea bass well.
� This is called overfitting the data
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Generalization
training data testing data

� Simpler decision boundary does not perform ideally 
on the training data but generalizes better on new 
data

� Favor simpler classifiers
� William of Occam (1284-1347): “entities are not 

to be multiplied without necessity”
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Pattern Recognition System Structure
input

feature extraction

decision

classification

segmentation

sensing

post-processing

Patterns should be well separated 
and should not overlap.

Extract discriminating features. Good features 
make the work of classifier easy.

do
m

ai
n 

  d
e p

e n
de

nt

Use features to assign the object to a category. 
Better classifier makes feature extraction easier. 
Our main topic in this course

Exploit context (input depending information) to 
improve system performance

Tne cat The cat

camera, microphones, medical 
imaging devices, etc. 
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How to design a PR system?

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

prior
knowledge
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Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

� Collect Data
� Can be quite costly
� How do we know when 

we have collected an 
adequately 
representative set of  
testing and training 
examples?
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Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

� Choose features
� Should be discriminating, i.e. 

similar for objects in the same 
category, different for objects in 
different categories:

� Prior knowledge plays a great 
role (domain dependent)

� Easy to extract
� Insensitive to noise and 

irrelevant transformations

good features: bad features:
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Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

� Choose model
� What type of classifier to 

use?
� When should we try to 

reject one model and try 
another one?

� What is the best classifier 
for the problem?
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Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

� Train classifier
� Process of using data to 

determine the parameters of 
classifier

� Change parameters of the 
chosen model so that the 
model fits the collected data

� Many different procedures 
for training classifiers

� Main scope of the course
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Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

� Evaluate Classifier
� measure system 

performance
� Identify the need for 

improvements in system 
components

� How to adjust complexity of 
the model to avoid over-
fitting? Any principled 
methods to do this?

� Trade-off between 
computational complexity 
and performance
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Conclusion

� useful
� a lot of exciting and important 

applications
� but hard

� must solve many issues for a successful 
pattern recognition system



34

Review: mostly probability and 
some statistics
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Content

� Probability
� Axioms and properties
� Conditional probability and independence
� Law of Total probability and Bayes theorem

� Random Variables
� Discrete
� Continuous

� Pairs of Random Variables
� Random Vectors
� Gaussian Random Variable



event A

Basics
� We are performing a random experiment (catching 

one fish from the sea)
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Axioms of Probability

1.
2.
3. If                   then∅=BA� )()()( BPAPBAP +=�
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1=)(SP
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Properties of Probability
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Conditional Probability
� If A and B are two events, and we know that event 

B has occurred, then (if P(B)>0)

P(A|B)=

U

P(A   B)
P(B)

S

BA A   B

U B occurred BA   B

U

�� ���
� !���� � ����� ������������ ���
� !�� ���	�" ��� �

U

P(A|B)

U

P(A   B)= P(B)� multiplication rule
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Independence

� A and B are independent events if 
P(A   B) = P(A) P(B)

U

� By the law of conditional probability, if A 
and B are independent

P(A|B) =                 = P(A) 
P(A) P(B)

P(B)

� If two events are not independent, then they 
are said to be dependent



Law of Total Probability
� B , B ,…,B  partition S1 2 n B1

B2

B3

B4� Consider an event  A
A

A = U U U
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Bayes Theorem
� Let B , B , …, B , be a partition of the 

sample space S. Suppose event A occurs.  
What is the probability of event B ?

� Answer: Bayes Rule
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Random Variables
� In random experiment, usually assign some number 

to the outcome, for example, number of of fish fins 
� A random variable X is a function from sample 

sample space S to a real number. ���� $

� X is random due to randomness of its argument

�
�

�

�

�

$

�

%

&

(# of fins)

� (((( )))) (((( ))))(((( )))) (((( ))))(((( ))))aXPaXPaXP ====ΩΩΩΩ∈∈∈∈================ ωωωωωωωωωωωω |



Two Types of Random Variables

� Discrete random variable has countable 
number of values 
� number of fish fins (0,1,2,….,30)

� Continuous random variable has 
continuous number of values
� fish weight (any real number between 0 and 

100)



Cumulative Distribution Function

� Given a random variable X, CDF  is defined 
as (((( )))) (((( ))))aXPaF ≤≤≤≤====
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Properties of CDF

1. F(a) is non decreasing
2.
3.

(((( )))) (((( ))))aXPaF ≤≤≤≤====

(((( )))) 1====∞∞∞∞→→→→ bFblim

(((( )))) 0====∞∞∞∞−−−−→→→→ bFblim

(((( )))) )()( aFbFbXaP −−−−====≤≤≤≤<<<<

�


	� � �� � 	� � �

� � � �
� � �� � ��	�� � � � �� �

�   

� !  

� "� #

� "!  #

� Questions about X can be asked in terms of 
CDF

Example: 
P(���� � ��� � ���� �� ��
�' ( ��
" �) ( )=F(30)-F(20)
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Discrete RV: Probability Mass Function

� Given a discrete random variable X, we 
define the probability mass function as

(((( ))))aXPap ========)(

� Satisfies all axioms of probability

(((( )))) (((( ))))��������
≤≤≤≤≤≤≤≤

============≤≤≤≤====
axax

apaXPaXPaF )()(

� CDF in discrete case satisfies
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Continuous RV:  Probability Density Function

� Given a continuous RV X,  we say f(x) is its 
probability density function if 

� (((( )))) (((( )))) (((( ))))dxxfaXPaF
a

				
∞∞∞∞−−−−

====≤≤≤≤====

(((( )))) (((( ))))dxxfbXaP
b

a
				====≤≤≤≤≤≤≤≤� and, more generally
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Properties of Probability Density Function

(((( )))) (((( )))) 0============ 				 dxxfaXP
a

a

(((( )))) (((( )))) 1========∞∞∞∞≤≤≤≤≤≤≤≤∞∞∞∞−−−− 				
∞∞∞∞

∞∞∞∞−−−−

dxxfXP

(((( )))) (((( ))))xfxF
dx
d ====

(((( )))) 0≥≥≥≥xf



probability mass probability density
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p d
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� $  

� true probability

0.60.3
0.4

� density, not probability
� P(fish weights 30kg) 0.6
� P(fish weights 30kg)=0

≠≠≠≠

� P(fish weights between 29 
and 31kg)= 				

31

29
dxxf )(

� P(fish has 2 or 3 fins)= 
=p(2)+p(3)=0.3+0.4

� take sums � integrate
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Expected Value

� Also known as mean, expectation, or first 
moment

� Expectation can be thought of as the 
average or the center, or the expected 
average outcome over many experiments

(((( )))) (((( ))))����∀∀∀∀
========

x
xpxXEµµµµdiscrete case:

(((( )))) 				
∞∞∞∞

∞∞∞∞−−−−
======== dxxfxXE )(µµµµcontinuous case:

� Useful characterization of a r.v.
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Expected Value for Functions of X

� Let g(x) be a function of the r.v. X. Then
[[[[ ]]]] (((( ))))����∀∀∀∀

====
x

xpxgXgE )()(discrete case:

[[[[ ]]]] (((( ))))				
∞∞∞∞

∞∞∞∞−−−−
==== dxxfxgXgE )()(continuous case:

� An important function of X: [X-E(X)]2

� Variance measures the spread around the 
mean

1/2� Standard deviation = [Var(X)]    , has the 
same units as the r.v. X

�� Variance  E[[XVariance  E[[X--E(X)]  ] = E(X)]  ] = varvar(X)=(X)=σσ22 2
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Properties of Expectation

� If X is constant r.v. X=c, then E(X) = c

� If a and b are constants, E(aX+b)=aE(X)+b

(((( ))))(((( )))) (((( ))))(((( ))))�������� ========
++++====++++

n

i iii
n

i iii cXEacXaE
11

� More generally, 

� If a and b are constants, then            
var(aX+b)= a var(X)2
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Pairs of Random Variables

� Say we have 2 random variables:
� Fish weight X
� Fish lightness Y

� Can define joint CDF
(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))bY,aX|PbY,aXPb,aF ≤≤≤≤≤≤≤≤∈∈∈∈====≤≤≤≤≤≤≤≤==== ωωωωωωωωΩΩΩΩωωωω

� Similar to single variable case, can define
� discrete: joint probability mass function 

� continuous: joint density function   

(((( )))) (((( ))))bYaXPbap ============ ,,

(((( ))))yxf ,

(((( )))) (((( ))))								
≤≤≤≤≤≤≤≤
≤≤≤≤≤≤≤≤

====≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤

dyc
bxa

dydxyxfdYcbXaP ,,
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Marginal Distributions

� given joint mass function p   (a,b), marginal, 
i.e. probability mass function for r.v. X can 
be obtained from p   (a,b)

x,y

x,y

(((( )))) (((( ))))����
∀∀∀∀

====
y

yxx yapap ,, (((( )))) (((( ))))����
∀∀∀∀

====
x

yxy bxpbp ,,

� marginal densities f (x) and f (y) are obtained 
from joint density f    (x,y) by integrating 

(((( )))) (((( ))))dyyxfxf
y

y yxx 				
∞∞∞∞====

−∞−∞−∞−∞====
==== ,,

x

x,y

y

(((( )))) (((( ))))dxyxfyf
x

x yxy 				
∞∞∞∞====

−∞−∞−∞−∞====
==== ,,
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Independence of Random Variables

� r.v. X and Y are independent if

(((( )))) (((( )))) (((( ))))yYPxXPyYxXP ≤≤≤≤≤≤≤≤====≤≤≤≤≤≤≤≤ ,

� Theorem: r.v. X and Y are independent if 
and only if

(((( )))) (((( )))) (((( ))))xpypyxp xyyx ====,, (discrete)

(((( )))) (((( )))) (((( ))))xfyfyxf xyyx ====,, (continuous)
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More on  Independent RV’s

� If X and Y are independent, then

� E(XY)=E(X)E(Y)
� Var(X+Y)=Var(X)+Var(Y)
� G(X) and H(Y) are independent
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Covariance
� Given r.v. X and Y, covariance is defined as:

(((( )))) (((( ))))(((( )))) (((( ))))(((( ))))[[[[ ]]]] (((( )))) (((( )))) (((( ))))YEXEXYEYEYXEXEYX −−−−====−−−−−−−−====,cov

� Covariance (from co-vary) indicates tendency 
of X and Y to vary together
� If X and Y tend to increase together, Cov(X,Y) > 0
� If X tends to decrease when Y increases, Cov(X,Y) 

< 0
� If decrease (increase) in X does not predict 

behavior of Y, Cov(X,Y) is close to 0

� Covariance is useful for checking if features X
and Y give similar information 
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Covariance Correlation

� If cov(X,Y) = 0, then X and Y are said to be 
uncorrelated (think unrelated).  However X 
and Y are not necessarily independent.

� If X and Y are independent, cov(X,Y) = 0 

� Can normalize covariance to get correlation

(((( )))) (((( ))))
(((( )))) (((( )))) 11 ≤≤≤≤====≤≤≤≤−−−−

YX
YX

YXcor
varvar
,cov

,
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Random Vectors
� Generalize from pairs of r.v. to vector of r.v. 

X= [X  X … X  ] (think multiple features)1 2 3

� Joint CDF, PDF, PMF are defined similarly to 
the case of pair of r.v.’s

� All the properties of expectation, variance, 
covariance transfer with suitable modifications

(((( )))) (((( ))))nnn xXxXxXPxxxF ≤≤≤≤≤≤≤≤≤≤≤≤==== ,...,,,...,, 221121

Example:
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covariancesvariances

Covariance Matrix
� characteristics summary of random vector
� cov(X)=cov[X  X … X ] = Σ =E[(X- µ)(X- µ) ]=T

1 2 n

E(X – µ )(X – µ )1 11 1
E(X – µ )(X – µ )2 12 1

E(X – µ )(X – µ )n 1n 1

E(X – µ )(X – µ )n 1n 1
E(X – µ )(X – µ )n 2n 2

E(X – µ )(X – µ )n nn n

…
…

…

… …

σ2
1

σ2
2

σ2
3

c21

c12 c13

c31

c23

c32
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Normal or Gaussian Random Variable

� Has density 

� Mean µ, and variance σ

(((( ))))
2

2
1

2
1 ����

����

����
����
����

���� −−−−−−−−
==== σσσσ

µµµµ

ππππσσσσ

x

exf

2
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Multivariate Gaussian

� has density

� mean vector
� covariance matrix 

(((( ))))
(((( ))))

(((( )))) (((( ))))[[[[ ]]]]µµµµµµµµ

ππππ
−−−−����−−−−−−−− −−−−

����
====

xx

n
exf

1

2
1

2122

1
//

[[[[ ]]]]nµµµµµµµµµµµµ ,,�1====

����
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Why Gaussian?

� Frequently observed (Central limit theorem)
� Parameters µ and Σ are sufficient to 

characterize the distribution
� Nice to work with

� Marginal and conditional distributions also are 
gaussians

� If X ’s are uncorrelated then they are also 
independent

i
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Summary

� Intro to Pattern Recognition
� Review of Probability and Statistics
� Next time will review linear algebra


