CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 11



Today

=  Support Vector Machines (SVM)
= |ntroduction

= Linear Discriminant
= Linearly Separable Case
= Linearly Non Separable Case

= Kernel Trick
= Non Linear Discriminant



SVM

Said to start in 1979 with Vladimir
Vapnik’'s paper

Major developments throughout
1990’s

Elegant theory

= Has good generalization properties
Have been applied to diverse

problems very successfully in the last
10-15 years

One of the most important
developments in pattern recognition
In the last 10 years




Linear Discriminant Functions

= A discriminant function is linear if it can be written as
agx) =wix + w,

g(x)>0 = xeclass 1
g(x)<0 = xeclass 2

x(2) 4

= which separating hyperplane should we choose?



Linear Discriminant Functions

= Training data is just a subset of of all possible data

= Suppose hyperplane is close to sample x;

= |f we see new sample close to sample 1, it is likely
to be on the wrong side of the hyperplane

x(2) 4 O]

= Poor generalization (performance on unseen data)



Linear Discriminant Functions

= Hyperplane as far as possible from any sample

= New samples close to the old samples will be
classified correctly

= Good generalization



SVM

= |dea: maximize distance to the closest example
2) [] 2
x: X

smaller distance larger distance

= For the optimal hyperplane

= distance to the closest negative example = distance to
the closest positive example



SVM: Linearly Separable Case

= SVM: maximize the margin
x(2) 4 -

= margqin is twice the absolute value of distance b of
the closest example to the separating hyperplane
= Better generalization (performance on test data)

= in practice
= and in theory



SVM: Linearly Separable Case
x2) A -

= Support vectors are the samples closest to the
separating hyperplane
= they are the most difficalt patterns to classify

= Optimal hyperplane is completely defined by support vectors

= of course, we do not know which samples are support vectors without
finding the optimal hyperplane



SVM: Formula for the Margin

g(x) = wix + w,

absolute distance between x
and the boundary g(x) = 0

distance is unchanged for hyperplane
g:(x)=0.g (X)

aw'x+aw,| |w'x+w,

aw| v

Let x; be an example closest to the boundary. Set
‘w’x,. + wo‘ =1

Now the largest margin hyperplane is unigue



Today

=  Continue Support Vector Machines (SVM)

= Linear Discriminant
= Linearly Separable Case
= Linearly Non Separable Case

= Kernel Trick
= Non Linear Discriminant



SVM: Linearly Separable Case

= SVM: maximize the margin
x(2) 4 -

= margqin is twice the absolute value of distance b of
the closest example to the separating hyperplane
= Better generalization (performance on test data)

= in practice
= and in theory



SVM: Formula for the Margin

= For uniqueness, set w'x;+w,|=1 for any example
X; closest to the boundary

= now distance from closest sample x;to g(x) = 0 is

Wi w Xx@
A

= Thus the margin is

2

m=_—
wi




SVM: Optimal Hyperplane

. _ 2
= Maximize margin m=-—
wi

= subject to constraints
w'x,+w,>1 if x, is positive example
w'x, +w, <-1 if x; is negative example

s et 1%= 1 if x; is positive example
z,=-1 if x, is negative example

= Can convert our problem to

minimize J(w)=%HwH2

constrainedto z(w'x, +w,)>1 Vi

= J(w) Is a quadratic function, thus there is a single
global minimum



SVM: Optimal Hyperplane

= Use Kuhn-Tucker theorem to convert our problem to:

maximize Za _122““12121":"/

1111

constrainedto ;20 Vi and Zaz =

* a={a,,..., a,} are new variables, one for each sample

= Can rewrite Lp(@) using n by n matrix H:

— — t — —
a1 a1

N, 1] ;
—;a,.z.H.

a a

n n

= where the value in the ith row and jth column of His

H,=zzxx;



SVM: Optimal Hyperplane

Use Kuhn-Tucker theorem to convert our problem to:

maximize LD(a)=Zn:a,— ZZaa!z,zxx

JTPT
1111

constrainedto ;20 Vi and Zaz =

a={a,,..., a,} are new variables, one for each sample
L 5(@) can be optimized by quadratic programming

L () formulated in terms of «
= it depends on w and w,indirectly



SVM: Optimal Hyperplane

= After finding the optimal ¢ ={«,,..., &}
= For every sample i, one of the following must hold
= ;=0 (sample 7 is not a support vector)
= ;0 and z(w'x+w,- 1) = 0 (sample I is support vector)

= can find wusing w=> o,z x,
i=1
= can solve for w,using any ;>0 and o |z, (w'x, +w,)-1]=0

_ t
Wo=—-WX,

I

= Final discriminant function:

g(x)= [ Za,.z,.x,.j X+w,

X;eS

= where Sis the set of support vectors
S= {Xi | Q; # 0}



SVM: Optimal Hyperplane

maximize Ly(@)=> ;-

constrained to ;20 Vi and ) o;z,=0

* L,() depends on the number of samples, not on
dimension of samples
= samples appear only through the dot products x;x;

= This will become important when looking for a
nonlinear discriminant function, as we will see soon



SVM: Example using Matlab

Class 1: [1,6],[1,10],[4,11] wom ™
Class 2: [5,2], [7,6], [10,4] 8

6 ®
Let’s pile all data into array X - .
1 6 4
1 10
x—|4 1 = ®
15 2 | | |
7 6 1] % 2 4 8§ 10
| | 10 4 1
Pile z;'s into vector z=|_]
—1
-1
Matrix Hwith H, = z,z;x{x;, in matlab use H=(x*x").*(z*Z2')

37 61 70 -17 -43 -34

61 101 114 -25 -67 -50

70 114 137 -42 -94 -84
-17 -25 -42 29 47 58
-43 -67 -94 47 85 94
-34 -50 -84 58 94 116

H=




SVM: Example using Matlab

Matlab expects quadratic programming to be stated
in the canonical (standard) form which is

minimize L,(@)=0.5a'Ha+ f'a
constrainedto Aa<aand Ba=0>b

= where A,B,Hare nby n matrices and f, a, b are vectors

Need to convert our optimization problem to
canonical form

— _t — —

maximize Ly(a@)=>a-—-| i |H

constrainedto ;>0 Vi and Zaz =



SVM: Example using Matlab

Multiply by —1 to convert to minimization:

minimize Ly(@)=->_ ¢, +%a’Ha
i=1

Let f{ : }=—ones(6,1), then can write

L 1
minimize LD(a)=f’a+Ea’Ha

First constraint is ;=20 Vi

0

Let A={_1E 2 05}=-c—>yc—>(6), a=|:5

= zeros(6,1)
0 - —1 0

Rewrite the first constraint in canonical form:
Aa<a



SVM: Example using Matlab

= Qur second constraint is Zaz—

zZ, - e Z
= Let B={9 = 01-[[z]; [zeros(56)]]
0 0
0
and b=L§J=zeros(6,1)

=  Second constraint in canonical form is:

Ba=0>b
= Thus our problem is in canonical form and can be
solved by matlab:

minimize L,(@)=0.5a'Ha+ f'a
constrainedto Aa<aand Ba=0>b




SVM: Example using Matlab

= a = quadprog(H+eye(6)*0.001, f, A, a, B, b)

for stability /.
10 H ‘

0.036 d
0 /
: 0.039+— Support /'_L—__/y‘
=  Solution = 0 vectors —
0078/ ./ e

[ =

= find wusing w= Zazx a*Z)tX=[_o:20

= since &, >0, can find w, using

w, =zl—w"‘x1 =0.13
1



SVM: Non Separable Case

= Data is most likely to be not linearly separable, but
linear classifier may still be appropriate

AXx?

outliers

= Can apply SVM in non linearly separable case

= data should be “almost” linearly separable for good
performance



SVM: Non Separable Case
= Use slack variables &,,..., &, (one for each sample)

= Change constraints from zWw'x,+w,)>1 Vi to
z(wix, +w,)>1-¢& Vi

= & is a measure of
deviation from the ideal

for sample 7

= £>1 sample i is on the wrong
side of the separating
hyperplane

= 0< & <1 sample i is on the
right side of separating
hyperplane but within the
region of maximum margin

= £ < 0is the ideal case for
sample i




SVM: Non Separable Case
= Would like to minimize

1 # of samples
Jw,é,,...,E ) = EHWH 2+ S not in ideal location

1 if & >0
0 if&<0

= constrainedto z,(w'x, +w,)>1-¢& and &3>0 Vi

= where I(&, >0)={

= Bis a constant which measures relative weight of the
first and second terms
= if Bis small, we allow a lot of samples not in ideal position

= if B is large, we want to have very few samples not in ideal
positon



SVM: Non Separable Case

1 # of examples
Jw,é&,,...,E ) = EHWH 2+ S not in ideal location

s X@ e

large 3, few samples not in small f, a lot of samples
ideal position not in ideal position



SVM: Non Separable Case

= Unfortunately this minimization problem is NP-hard
due to discontinuity of functions (<))

1 # of examples
Jw,é&,,...,E ) = EHWH 2+ S not in ideal location

= where (& >0) {1 ¢ >0

0 if£<0
= constrainedto z,(w'x, +w,)>1-¢ and & >0 Vi



SVM: Non Separable Case

= |nstead we minimize e
u
1 , . .
Jw,é,,...,E )= EHWH 2y of misclassified
examples

(z,(w'x, + wo)z 1-& Vi

= constrained to i £>0 i

= Can use Kuhn-Tucker theorem to converted to

maximize Za —122aa,z,zxx

JTPTj
1111

constrainedto  0<g;<p Vi and Zaz =

= find w using w=Za,.z,.x,.

= solve for w,using any 0 <g; < 8 and &z, (w'x, +w,)-1|=



Non Linear Mapping

= Cover’s theorem:

= “pattern-classification problem cast in a high dimensional
space non-linearly is more likely to be linearly separable
than in a low-dimensional space”

= One dimensional space, not linearly separable

oo -—ooo0o 00—
3 -2 012 3 5

= Lift to two dimensional space with ¢(x)=(x,x?)




Non Linear Mapping

= To solve a non linear classification problem with a
linear classifier
1. Project data x to high dimension using function ¢(x)
2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = w! ¢(x) +w,

¢(X)=(X5X2) A o
o585 000 -
43 2 0 1 2> 3 5 . a /g/

=|n 2D, discriminant function is linear

(1) (1)
Q(L):(z)}) = [W1 Wz]li));(2)} + W,

=In 1D, discriminant function is not linear g(x)=w,x+w,x?+w,



Non Linear Mapping: Another Example




Non Linear SVM

= (Can use any linear classifier after lifting data into a
higher dimensional space. However we will have to

deal with the “curse of dimensionality”
1. poor generalization to test data
2. computationally expensive

= SVM avoids the “curse of dimensionality” problems by

1. enforcing largest margin permits good generalization
= |t can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality
2. computation in the higher dimensional case is performed
only implicitly through the use of kernel functions



Non Linear SVM: Kernels

Recall SVM optimization
maximize LD(a)=Zn:a,. —% _n a,.a,.z,.zjx,.x!
Note this optimization depends on samples X; only

through the dot product x;'x;

If we lift x; to high dimension using ¢(x), need to
compute h|gh dimensional product ¢(x;)'¢(x;)

maximize Ll Za ——ZZaa,z,zl

1111

Idea: find kernel function K(x;,x;) s.t.

Kix;, X)) = ¢(x;)'p(X))



Non Linear SVM: Kernels

maximize Ly( Za ——ZZaa,z,z,

1111

= Then we only need to compute K(x; Xx;) instead of

P(X;) o X))
= “kernel trick”. do not need to perform operations in high
dimensional space explicitly



Non Linear SVM: Kernels

= Suppose we have 2 features and K(x,y) = (xty)2

=  Which mapping ¢(x) does it correspond to?
(1)

2
K(x,y)=(x'y) = ([X“) X(z)][}}:(z)D = (xMy® 4 x@y @

= (xWy Oy +2( y ))(X(Z) ‘2))+(X‘2)y(2))2 t
- |xvf V2 OF [y v2yWy® (y@f]

. Thus g00)=[(x"F Zxx@ (x|



Non Linear SVM: Kernels

= How to choose kernel function K(x; x;)?
= Kix;,x;) should correspondto product ¢(x;)'¢(x;) in a
higher dimensional space
= Mercer’s condition tells us which kernel function can be
expressed as dot product of two vectors
= Some common choices:
= Polynomial kernel
K(x,.,xl.)= (x.x.+1)”

J

"*

= Gaussian radial Basis kernel (data is lifted in infinite
dimension)
2
X, = x|

K(x,.,xj)= exp(— 2;_2



Non Linear SVM

= search for separating hyperplane in high dimension
wo(x)+w,=0

= Choose ¢(x) so that the first (“0”th) dimension is the
augmented dimension with feature value fixed to 1

o(x)=[1 xV x@ x0x@f

= Threshold parameter w, gets folded into the weight

vector w
lw, w =0



Non Linear SVM

=  Will not use notation a =[w, w], we'll use old
notation w and seek hyperplane through the origin

wo(x)=0

= |f the first component of ¢(x) is not 1, the above is
equivalent to saying that the hyperplane has to go
through the origin in high dimension
= removes only one degree of freedom

= But we have introduced many new degrees when we lifted
the data in high dimension



Non Linear SVM Recepie

= Start with data x,,...,x, which lives in feature space
of dimension d

= Choose kernel K(x;x;) or function ¢(x;) which takes
sample x; to a higher dimensional space

= Find the largest margin linear discriminant function in
the higher dimensional space by using quadratic
programming package to solve:

maximize [_D(a) — Za" _%Z a.a.z.z.K(x,.,Xj)

0

constrainedto 0<a,<p Vi and ) ¢,z
i=1




Non Linear SVM Recipe

=  Weight vector win the high dimensional space:

W= Zaizi¢(x)

X;eS

= where Sis the set of support vectors S={x, |, =0}

= Linear discriminant function of largest margin in the
high dimensional space:

9(p(x)) = w'p(x) - ( S .zl )j o(x)

X;eS

= Non linear discriminant function in the original space:

X)=(Zaizi¢(xi)j ¢(X) = Zaizi¢t Z(IZK X;, X

X;€S X;€S x;eS

= decideclass 1if g(x) > 0, otherwise decide class 2



Non Linear SVM

= Nonlinear discriminant function

g(x) = Z o, z,|[K(x;, x)

XiES

( X) _ weight of support | [F7 “invefr;s,oemdi)?,g[%nce”
g o vector Xx;
i support vector X;

most important
_training samples, 2
l.e. support vectors K(X,-,X)=exp(— 7| X — x| )




SVM Example: XOR Problem

Class 1: X, =[1,-1], X, = [-1,1]
Class 2: x5 = [1,1], X4 = [-1,-1] -

Use polynomial kernel of degree 2: o
= This kernel corresponds to mapping

x)=[1 2x0 2@ J2xWx@ (x0) (X(z))z]:

Need to maximize

4 1 4 4 2
a)=> a; - EZZa,a,z,z!( xj+1)
i=1

i=1 j=1

constrainedto 0<ea, Vi and o,+a,-a,-a, =0




SVM Example: XOR Problem

4
= Canrewrite Ly(a)=) ¢, —%a’Ha
i=1 i ]

= where a=lo, & o o and H=

= Take derivative with respect to a¢and set itto 0
d HiREr =]
1 —1 —
—Lla)=|1|-|_1 -3 "9 1/@=0
da 1] -1 -1 1 9

= Solution to the above is o= @, = a3 = ;= 0.25
=  satisfies the constraints Vi, 0<¢e, and a,+a,—a,—a, =0
= all samples are support vectors



SVM Example: XOR Problem

pbo)=lt V2x? vax® Vaxox® (¢0F (xF]

=  Weight vector wis:
w=> a,zp(x;) =0.25(p(x,)+ 9(x;)- p(x;)- p(x,))
) =lo 0 0 -v2 0 o

= Thus the nonlinear discriminant function is:

g(x)=wo(x) = Za: w.p,(x) = —\/E(\/Ex(’)x(z)) _ _ox(Ny (@



SVM Example: XOR Problem

g(x)=-2x"x1?

decision boundaries nonlinear decision boundary is linear



SVM Summary

= Advantages:
= Based on nice theory
= excellent generalization properties
= objective function has no local minima
= can be used to find non linear discriminant functions

=  Complexity of the classifier is characterized by the number
of support vectors rather than the dimensionality of the
transformed space

= Disadvantages:
= tends to be slower than other methods
= guadratic programming is computationally expensive



