CS434a/541a: Pattern Recognition Prof. Olga Veksler

Lecture 13

Today

- Continue Multilayer Neural Networks (MNN)
 - Review MNN structure
 - Backpropagation
 - Training Protocols

MNN: Feed Forward Operation

MNN: Notation for Weights

Use w_{ji} to denote the weight between input unit i and hidden unit j

• Use v_{kj} to denote the weight between hidden unit j and output unit k

hidden unit
$$j$$
 output unit k
 v_{kj}
 v_{kj}
 v_{kj}
 v_{kj}

MNN: Notation for Activation

Use net; to denote the activation and hidden unit j

$$net_{j} = \sum_{i=1}^{d} x^{(i)} w_{ji} + w_{j0}$$

$$x^{(2)} w_{j2}$$

$$y_{j}$$

$$y_{j}$$

• Use net_k^* to denote the activation at output unit k

$$net_{k}^{*} = \sum_{j=1}^{N_{H}} y_{j} v_{kj} + v_{k0}$$

$$y_{2} v_{k2}$$

$$y_{k1}$$

$$y_{k1}$$

$$y_{k2}$$

$$y_{k2}$$

$$y_{k2}$$

$$y_{k3}$$

$$y_{k4}$$

$$y_{k2}$$

$$y_{k3}$$

$$y_{k4}$$

Discriminant Function

Discriminant function for class k (the output of the kth output unit)

 Rich expressive power: every continuous discriminant function can be implemented with enough hidden units, 1 hidden layer, and proper nonlinear activation functions

Expressive Power

FIGURE 6.2. A 2-4-1 network (with bias) along with the response functions at different units; each hidden output unit has sigmoidal activation function $f(\cdot)$. In the case shown, the hidden unit outputs are paired in opposition thereby producing a "bump" at the output unit. Given a sufficiently large number of hidden units, any continuous function from input to output can be approximated arbitrarily well by such a network. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

MNN Activation function

- Must be nonlinear for expressive power larger than that of perceptron
 - If use linear activation function at hidden layer, can only deal with linearly separable classes
 - Suppose at hidden unit j, $h(u)=a_iu$

$$g_{k}(x) = f\left(\sum_{j=1}^{N_{H}} v_{kj} h\left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0}\right) + v_{k0}\right)$$

$$= f\left(\sum_{j=1}^{N_{H}} v_{kj} a_{j} \left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0}\right) + v_{k0}\right)$$

$$= f\left(\sum_{i=1}^{d} \sum_{j=1}^{N_{H}} \left(v_{kj} a_{j} w_{ji} x^{(i)} + w_{j0}\right) + v_{k0}\right)$$

$$= f\left(\sum_{i=1}^{d} x^{(i)} \sum_{j=1}^{N_{H}} v_{kj} a_{j} w_{ji} + \left(\sum_{j=1}^{N_{H}} w_{j0} + v_{k0}\right)\right)$$

MNN Activation function

In previous example, used discontinuous activation function

$$f(net_k) = \begin{cases} 1 & if \ net_k \ge 0 \\ -1 & if \ net_k < 0 \end{cases}$$

 We will use gradient descent for learning, so we need to use continuous activation function **sigmoid** function

From now on, assume f is a differentiable function

MNN: Modes of Operation

Network have two modes of operation:

Feedforward

The feedforward operations consists of presenting a pattern to the input units and passing (or feeding) the signals through the network in order to get outputs units (no cycles!)

Learning

The supervised learning consists of presenting an input pattern and modifying the network parameters (weights) to reduce distances between the computed output and the desired output

MNN: Class Representation

- Training samples $x_1, ..., x_n$ each of class 1, ..., m
- Let network output z represent class c as target t^(c)

$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_c \\ \vdots \\ z_m \end{bmatrix} = t^{(c)} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$
 cth row

Our Ultimate Goal For FeedForward Operation

MNN training to achieve the Ultimate Goal

Modify (learn) MNN parameters w_{ji} and v_{kj} so that for each *training* sample of class c MNN output $z = t^{(c)}$

Network Training (learning)

- 1. Initialize weights w_{ii} and v_{ki} randomly
- 2. Iterate until a stopping criterion is reached

- Learn \mathbf{w}_{ii} and \mathbf{v}_{ki} by minimizing the training error
- What is the training error?
- Suppose the output of MNN for sample x is z and the target (desired output for x) is t
- Error on one sample: $J(w,v) = \frac{1}{2} \sum_{c=1}^{m} (t_c z_c)^2$
- Training error: $J(w,v) = \frac{1}{2} \sum_{i=1}^{n} \sum_{c=1}^{m} (t_c^{(i)} z_c^{(i)})^2$

Use gradient descent:

$$\mathbf{v}^{(0)}, \mathbf{w}^{(0)} = \text{random}$$
 $repeat \ until \ convergence:$
 $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla_{\mathbf{w}} \mathbf{J}(\mathbf{w}^{(t)})$
 $\mathbf{v}^{(t+1)} = \mathbf{v}^{(t)} - \eta \nabla_{\mathbf{v}} \mathbf{J}(\mathbf{v}^{(t)})$

For simplicity, first take training error for one sample X_i

$$J(w,v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$$
 function of w,v

fixed constant

$$\boldsymbol{z}_{k} = \boldsymbol{f} \left(\sum_{j=1}^{N_{H}} \boldsymbol{v}_{kj} \boldsymbol{f} \left(\sum_{i=1}^{d} \boldsymbol{w}_{ji} \boldsymbol{x}^{(i)} + \boldsymbol{w}_{j0} \right) + \boldsymbol{v}_{k0} \right)$$

- Need to compute
 - 1. partial derivative w.r.t. hidden-to-output weights $\frac{\partial \mathbf{J}}{\partial \mathbf{v}_{ki}}$
 - 2. partial derivative w.r.t. input-to-hidden weights $\frac{\partial \mathbf{J}}{\partial \mathbf{w}_{ii}}$

BackPropagation: Layered Model

activation at hidden unit **j**

output at hidden unit **j**

activation at output unit **k**

activation at output unit **k**

objective function

$$net_{j} = \sum_{i=1}^{d} x^{(i)} w_{ji} + w_{j0}$$

$$y_{j} = f(net_{j})$$

$$net_{k}^{*} = \sum_{j=1}^{N_{H}} y_{j} v_{kj} + v_{k0}$$

$$z_{k} = f(net_{k}^{*})$$

$$J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_{c} - z_{c})^{2}$$

$$net_k = \sum_{j=1}^{N_H} y_j v_{kj} + v_{k0}$$
 $\Rightarrow z_k = f(net_k^*)$ $\Rightarrow J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$

• First compute hidden-to-output derivatives $\frac{\partial J}{\partial v_{ki}}$

$$\frac{\partial J}{\partial \mathbf{v}_{kj}} = \frac{1}{2} \sum_{c=1}^{m} \frac{\partial}{\partial \mathbf{v}_{kj}} (t_c - \mathbf{z}_c)^2 = \sum_{c=1}^{m} (t_c - \mathbf{z}_c) \frac{\partial}{\partial \mathbf{v}_{kj}} (t_c - \mathbf{z}_c)$$

$$= (t_k - \mathbf{z}_k) \frac{\partial}{\partial \mathbf{v}_{kj}} (t_k - \mathbf{z}_k) = -(t_k - \mathbf{z}_k) \frac{\partial}{\partial \mathbf{v}_{kj}} (\mathbf{z}_k)$$

$$= -(t_k - \mathbf{z}_k) \frac{\partial \mathbf{z}_k}{\partial net_k^*} \frac{\partial net_k^*}{\partial \mathbf{v}_{kj}}$$

$$= \begin{bmatrix} -(t_k - \mathbf{z}_k) \mathbf{f}' (net_k^*) \mathbf{y}_j & \text{if } j \neq 0 \\ -(t_k - \mathbf{z}_k) \mathbf{f}' (net_k^*) & \text{if } j = 0 \end{bmatrix}$$

Gradient Descent Single Sample Update Rule for hidden-to-output weights v_{ki}

$$j > 0$$
: $v_{kj}^{(t+1)} = v_{kj}^{(t)} + \eta(t_k - z_k)f'(net_k^*)y_j$

$$j = 0$$
 (bias weight): $v_{k0}^{(t+1)} = v_{k0}^{(t)} + \eta(t_k - z_k)f'(net_k^*)$

• Now compute input-to-hidden $\frac{\partial \mathbf{J}}{\partial \mathbf{w}_{ii}}$

$$\frac{\partial J}{\partial w_{ji}} = \sum_{k=1}^{m} (t_k - z_k) \frac{\partial}{\partial w_{ji}} (t_k - z_k)$$

$$= -\sum_{k=1}^{m} (t_k - z_k) \frac{\partial z_k}{\partial w_{ji}} = -\sum_{k=1}^{m} (t_k - z_k) \frac{\partial z_k}{\partial net_k^*} \frac{\partial net_k^*}{\partial w_{ji}}$$

$$= -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) \frac{\partial net_k^*}{\partial y_j} \frac{\partial y_j}{\partial w_{ji}}$$

$$= -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} \frac{\partial y_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

$$= -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} \frac{\partial y_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

$$= \left\{ -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} f'(net_j) x^{(i)} \text{ if } i \neq 0 \right.$$

$$= \left\{ -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} f'(net_j) x^{(i)} \text{ if } i \neq 0 \right.$$

$$net_{h} = \sum_{h=1}^{d} x^{(i)} w_{hi} + w_{h0}$$

$$y_{j} = f(net_{j})$$

$$net_{k}^{*} = \sum_{s=1}^{N_{H}} y_{s} v_{ks} + v_{k0}$$

$$\sum_{k=1}^{N_{H}} y_{s} v_{ks} + v_{k0}$$

$$\sum_{k=1}^{N_{H}} y_{ks} v_{ks} + v_{k0}$$

$$\frac{\partial J}{\partial \mathbf{W}_{ji}} = \begin{cases} -f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} & \text{if } i \neq 0 \\ -f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} & \text{if } i = 0 \end{cases}$$

Gradient Descent Single Sample Update Rule for input-to-hidden weights wii

$$i > 0: \ w_{ji}^{(t+1)} = w_{ji}^{(t)} + \eta f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}$$

$$i = 0 \text{ (bias weight): } w_{j0}^{(t+1)} = w_{j0}^{(t)} + \eta f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}$$

$$i = 0$$
 (bias weight): $w_{j0}^{(t+1)} = w_{j0}^{(t)} + \eta f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}$

BackPropagation of Errors

$$\frac{\partial J}{\partial w_{ji}} = -f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} \qquad \frac{\partial J}{\partial v_{kj}} = -(t_k - z_k) f'(net_k^*) y_j$$

 Name "backpropagation" because during training, errors propagated back from output to hidden layer

Consider update rule for hidden-to-output weights:

$$\mathbf{v}_{kj}^{(t+1)} = \mathbf{v}_{kj}^{(t)} + \eta(\mathbf{t}_k - \mathbf{z}_k) \mathbf{f}'(\mathbf{net}_k^*) \mathbf{y}_j$$

- Suppose $t_k z_k > 0$
- Then output of the kth hidden unit is too small: $t_k > z_k$
- Typically activation function f is s.t. f' > 0
- Thus $(t_k z_k)f'(net_k^*) > 0$

 y_j z_k

- There are 2 cases:
 - 1. $y_j > 0$, then to increase z_k , should increase weight v_{kj} which is exactly what we do since $\eta(t_k z_k)f'(net_k^*)y_j > 0$
 - 2. $y_j < 0$, then to increase z_k , should decrease weight v_{kj} which is exactly what we do since $\eta(t_k z_k)f'(net_k^*)y_j < 0$

- The case $t_k z_k < 0$ is analogous
- Similarly, can show that input-to-hidden weights make sense
- Important: weights should be initialized to random nonzero numbers

$$\frac{\partial J}{\partial w_{ji}} = -f'(net_j)x^{(i)}\sum_{k=1}^{m}(t_k - z_k)f'(net_k^*)v_{kj}$$

• if $\mathbf{v}_{kj} = 0$, input-to-hidden weights \mathbf{w}_{ji} never updated

Training Protocols

- How to present samples in training set and update the weights?
- Three major training protocols:
 - 1. Stochastic
 - Patterns are chosen randomly from the training set, and network weights are updated after every sample presentation

2. Batch

weights are update based on all samples; iterate weight update

3. Online

 each sample is presented only once, weight update after each sample presentation

Stochastic Back Propagation

- 1. Initialize
 - number of hidden layers n_H
 - weights w, v
 - convergence criterion θ and learning rate η
 - time t = 0

2. do $x \leftarrow randomly chosen training pattern$ **for all** $0 \le i \le d$, $0 \le j \le n_H$, $0 \le k \le m$ $\mathbf{w}_{ji} = \mathbf{w}_{ji} + \eta \, \mathbf{f}'(\mathbf{net}_j) \mathbf{x}^{(i)} \sum_{k}^{m} (\mathbf{t}_k - \mathbf{z}_k) \, \mathbf{f}'(\mathbf{net}_k^*) \mathbf{v}_{kj}$ $\mathbf{w}_{j0} = \mathbf{w}_{j0} + \eta \, f'(\mathbf{net}_j) \sum_{k=1}^{m} (\mathbf{t}_k - \mathbf{z}_k) \, f'(\mathbf{net}_k^*) \mathbf{v}_{kj}$ $\mathbf{v}_{kj} = \mathbf{v}_{kj} + \eta(\mathbf{t}_k - \mathbf{z}_k) \mathbf{f'}(\mathbf{net}_k^*) \mathbf{y}_i$ $\mathbf{v}_{k0} = \mathbf{v}_{k0} + \eta(\mathbf{t}_{k} - \mathbf{z}_{k}) \mathbf{f}'(\mathbf{net}_{k}^{\star})$

$$t = t + 1$$
until $||J|| < \theta$

<u>return</u> v, w

Batch Back Propagation

- This is the *true* gradient descent, (unlike stochastic propagation)
- For simplicity, derived backpropagation for a single sample objective function:

$$J(w,v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$$

The full objective function:

$$J(w,v) = \frac{1}{2} \sum_{i=1}^{n} \sum_{c=1}^{m} (t_c^{(i)} - z_c^{(i)})^2$$

Derivative of full objective function is just a sum of derivatives for each sample:

$$\frac{\partial}{\partial w}J(w,v) = \frac{1}{2}\sum_{i=1}^{n} \frac{\partial}{\partial w} \left(\sum_{c=1}^{m} \left(t_{c}^{(i)} - z_{c}^{(i)}\right)^{2}\right)$$

already derived this

Batch Back Propagation

For example,

$$\frac{\partial J}{\partial w_{ji}} = \sum_{p=1}^{n} -f'(net_j) x_p^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}$$

Batch Back Propagation

1. Initialize n_H , w, v, θ , η , t = 0

2. <u>do</u>

one epoch

$$\Delta v_{kj} = \Delta v_{k0} = \Delta w_{ji} = \Delta w_{j0} = 0$$

$$for all \quad 1 \le p \le n$$

$$for all \quad 0 \le i \le d, \quad 0 \le j \le n_H, \quad 0 \le k \le m$$

$$\Delta v_{kj} = \Delta v_{kj} + \eta(t_k - z_k) f'(net_k^*) y_j$$

$$\Delta v_{k0} = \Delta v_{k0} + \eta(t_k - z_k) f'(net_k^*)$$

$$\Delta w_{ji} = \Delta w_{ji} + \eta f'(net_j) x_p^{(i)} \sum_{k=1}^m (t_k - z_k) f'(net_k^*) v_{kj}$$

$$\Delta w_{j0} = \Delta w_{j0} + \eta f'(net_j) \sum_{k=1}^m (t_k - z_k) f'(net_k^*) v_{kj}$$

$$\mathbf{V}_{kj} = \mathbf{V}_{kj} + \Delta \mathbf{V}_{kj}; \ \mathbf{V}_{k0} = \mathbf{V}_{k0} + \Delta \mathbf{V}_{k0}; \ \mathbf{W}_{ji} = \mathbf{W}_{ji} + \Delta \mathbf{W}_{ji}; \ \mathbf{W}_{j0} = \mathbf{W}_{j0} + \Delta \mathbf{W}_{j0}$$

$$t = t + 1$$
until $||J|| < \theta$

3. <u>return</u> v, w

Training Protocols

1. Batch

True gradient descent

2. Stochastic

- Faster than batch method
- Usually the recommended way

3. Online

- Used when number of samples is so large it does not fit in the memory
- Dependent on the order of sample presentation
- Should be avoided when possible