CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 13

Today

= Continue Multilayer Neural Networks (MNN)
= Review MNN structure
= Backpropagation
= Training Protocols

MNN: Feed Forward Operation

input layer: hidden layer: outtpq[t Iayeric
m outpyts, one for
d features egéiw AP

bias unit

MNN: Notation for Weights

= Use w; to denote the weight between input unit /
and hidden unit j

input unit / hidden unit j
@ -

—>> . >

X0 wjix® @ i

= Use y,;to denote the weight between hidden unit j
and output unit k

hidden unit j output unit k

V..:
DD —=—
yl ijyj k

MNN: Notation for Activation

= Use net;to denote the activation and hidden unit J

. X(1) thidden unit j
net!. = Z;‘ X(')Wj,- + W, W 7 >
i= J
W

= Use net*, to denote the activation at output unit k

Ny output unit k
netk — Zylvkl + VkO y7 Vk7

j=1 >
LZ"/"?\/§ %
1

Discriminant Function

= Discriminant function for class k (the output of the
kth output unit)

g.(x)=2z, = ‘activation at.
th hidden unit

Ny 4 _
= f(z; vﬂ(@j + vkoj
j= =

— _
~

activation at kth output unit

» Rich expressive power: every continuous
discriminant function can be implemented with
enough hidden units, 1 hidden layer, and proper
nonlinear activation functions

Expressive Power

LY X

FIGURE 6.2. A 2-4-1 network {with bias) along with the response functions at different units; each hidden
output unit has sigmoidal activation function f{-). In the case shown, the hidden unit outputs are paired in
opposition thereby producing a “bump” at the output unit. Given a sufticiently large number of hidden units,
any continuous function from input to output can be approximated arbitrarily well by such a network. From:
Richard O. Duda, Peter E. Hart, and David C. Stork, Fattern Classification. Copyright @© 2001 by John Wiley
& Sons, Inc.

MNN Activation function

= Must be nonlinear for expressive power larger than
that of perceptron

= |f use linear activation function at hidden layer, can
only deal with linearly separable classes

= Suppose at hidden unit j, h(u)=a;u

Ny d _
g,(x)= f(z vkjh(z w,x + Wjoj + vkoJ

j=1 i=1

(Ny

=fl Y v,a I[Zw x"’+wloj+vko
\11 i=1

(d Ny

_ (i)

=f (v,q.ajw..x + W,)+ V.o

i=1 j=1

MNN Activation function

= |n previous example, used discontinuous activation
function

' 1t 20 s
f(net,) ={ r ek

—1 if net, <0

= We will use gradient sigmoid function
descent for learning, so

we need to use
continuous activation
function

= From now on, assume f is a differentiable function

MNN: Modes of Operation

= Network have two modes of operation:

» Feedforward

The feedforward operations consists of presenting a
pattern to the input units and passing (or feeding) the
signals through the network in order to get outputs
units (no cycles!)

= Learning

The supervised learning consists of presenting an
iInput pattern and modifying the network parameters
(weights) to reduce distances between the computed
output and the desired output

MNN: Class Representation

= Training samples x,,..., x,, each of class 1,....m

= Let network output z represent class ¢ as target t°

Z, 0
I A BN

Z=1Z \= =1 11— th row

z 0

m b

Our Ultimate Goal For FeedForward Operation

sample of class ¢ MNN with weights {(c)

> wj; and vy, >

MNN training to achieve the Ultimate Goal

Modify (learn) MNN parameters wj; and v;; so that for
each training sample of class ¢ MNN output z = #°)

Network Training (learning)

1. Initialize weights
2. lterate until a stopping criterion is reached

choose p

iInput sample x

| =

wj; and v,; randomly

» | MNN with weights | QUtPUt Z=

wj; and Vv, -

Compare output z with the
desired target t; adjust w
and v,; to move closer to 'the

goal t(by backpropagation)

BackPropagation

Learn wj; and v,; by minimizing the training error
What is the training error?

Suppose the output of MNN for sample xis z and
the target (desired output for x) is ¢

m

Error on one sample: J(w,v)=%Z(tc—zc)2

Training error: J(w,

Use gradient descent:

c=1

1

v)= Ei S (10 - 20F

i=1 c=1

v® w® = random

repeat until convergence:
W(t+1)_wt) nv. J(())
v = v —pv,J(v?)

BackPropagation

= For simplicity, first take training error for one

sample Xx; 1 m ﬂn\cﬁon of w,v
Sw)=13'(t, - 20

c=1 \

fixed constant

_ f(z v, (z x4 w,0j+ ka]

= Need to compute
1. partial derivative w.r.t. hidden-to-output weights

oV,;

2. partial derivative w.r.t. input-to-hidden weights

aw,.,.

BackPropagation: Layered Model

activation at
hidden unit j

output at
hidden unit j

activation at
output unit k

activation at
output unit k

objective function

chain rule

SY
Q
as‘k

chain rule

BackPropagation

n9tk = Zijkj + Vo |:> Z, = f(net;() |:> J(W! V)= %i(tc _zc)2
c=1

j=1

= First compute hidden-to-output derivatives

oV,
oJ 18 9 y 0
— A tc_zc — tc_zc (tc_zc)
av,q. 2;avk,() ;()av,q.
) 0
— — — (t — =—\l, — —
(tk Zk) v, (tk Zk) (k z")avki (zk)

0z, onet,

=—(t, -z — -

, ")Bnetk IV,
~(t,—z,)f (net)y, if j=0
—(t.-z,)f(net,) if j=0

BackPropagation

Gradient Descent Single Sample Update Rule for
hidden-to-output weights v,;

(t+1)

J>0: Vi =VI((;')+77(tk_zk)f'(netI*()yj

(t+1) _

j = 0 (bias weight): v, ;" = v,(('g +7(t, - zk)f'(net;)

BackPropagation

. . oJ
= Now compute input-to-hidden
2 o 5 ow ;
aw,,. k1(t _zk)aw.. (t _Zk)
m azk - azk onet,
kz; - Z anet ow;
m onet, 9Y;
(t, —z,)F iy
s k () ayl aw
m dy; onet;
—_ —_z)f]
;(t z,)f'(net,)Vk/ Snet. aw,
m dy; onet;
= ;(tk—zk)f (net;)Vk, anelt W,
- > (t, —zk)f(netk)vkjf(net,) @ if i £0
= 4 kn=11
-3 (t, -z) (net;)v, f(net,) if i=0
=

BackPropagation

oJ

= < m
W, —f’(net)2 t,—2z)f (net)v,q. if i =0
L k=1

—f’(net) it —z)f (net;)v,q. if i #0
k=1

Gradient Descent Single Sample Update Rule for
input-to-hidden weights w

i>0: wi =wlt nf’(netj)x(")i(tk - z,) f(net;)v,

= 0 (bias weight): wt) = w®) + pf(net,)3 (t, - z,) F(net; v,

k=1

BackPropagation of Errors

oJ , u . dJ s
5 =—f (net) Z —2Z,) (netk)vkj v =—(t, -z,)f (netk)}’,-
Wi k=1 ki ——
error
unit i Y
unit J
o > i(‘5 Zq
-
—
zm
>

= Name “backpropagation” because during training,
errors propagated back from output to hidden layer

BackPropagation

Consider update rule for hidden-to-output weights:

(t+1) _

Vii = VI((;') + 77(tk - zk)f'(net;)yj
Suppose t, -z >0
Then output of the kth hidden unit is too small: t, > z,

'ypically activation function fis s.t. f’> 0

hus (t, —z,)f (net;) >0 7)@ z
There are 2 cases: —

1. y;>0, then to increase z,, should increase weight v,;
which is exactly what we do since 7(t, - z,)f' (net;)y, >0

2. y;<0, then to increase z,, should decrease weight v;;
which is exactly what we do since 7(t, - z,)f'(net;)y, <0

BackPropagation

The case t, -z, <0 is analogous

Similarly, can show that input-to-hidden weights
make sense

Important: weights should be initialized to random
nonzero numbers

aJ (net)

ow, 2. (t. —z) (net;)vkj

Ms

if vi; = 0, input-to-hidden weights w;; never updated

Training Protocols

= How to present samples in training set and update
the weights?

= Three major training protocols:

1. Stochastic

= Patterns are chosen randomly from the training set,
and network weights are updated after every sample

presentation

2. Batch

= weights are update based on all samples; iterate
weight update

3. Online

= each sample is presented only once, weight update
after each sample presentation

Stochastic Back Propagation

1. Initialize

number of hidden layers ng

weights w, v

convergence criterion #and learning rate n
time t=0

2. do »
X < randomly chosen training pattern

forall 0<i<d, 0<j<n,, 0<k<m

W;=W,+7 f’(net,.)x(")i (t. - z,) f(net,)ij

m k=1
W =W, + nf’(net,)Z(tk -z,) f’(net;)v,q.
k=
Vii = Vi +77(tk - zk)f'(netl*()yj

Vio = Vo T ﬂ(tk - zk)f'(netl*()

t=1+1
until ||J||<6

3. return v, w

Batch Back Propagation

This is the true gradient descent, (unlike stochastic
propagation)

For simplicity, derived backpropagation for a
single sample objective function:

m

Jw,v)= 23 (t, - 2,)

c=1

The full objective function:

m

Sww)= 23 5 (10 - 207

i=1 c=1

Derivative of full objective function is just a sum
of derivatives for each sample:

2 dw) =130 [5H (10~ 20F |

ow 2= 0w\ S

already derived this

Batch Back Propagation

= For example,

—Z;—f’(netj)x'); «—2z,) Flnet; v,

i

Batch Back Propagation

1. Initialize ny, w, v, 0, n,t=0
2. do

AV, =AV, =AW, =Aw;, =0

(forall 1< p<n
- forall 0<i<d, 0<j<n,, 0<k<m
QO . .
8. Avy = Avy +n(t, - z,)f (netk)y,-
$< AVkO =Avk0+ﬂ(tk_zk)f'(’;et;)
S Aw, = Aw , + 7 (net,) xDY (t, - z,) f (net;)v,,
(@) ji ji J P b k k k kj
AWy = AW, +7] f’(netj)kz_;(tk - z,) F'(net; v,
g
Vig = Vi +Avkj; Vio = Vo T AV,0> w;,=w, +ij,.; W;, =W +Awi0
t=1+1
until || J <6

3. return v, w

Training Protocols

1. Batch
= True gradient descent

2. Stochastic

= Faster than batch method
= Usually the recommended way

3. Online

= Used when number of samples is so large it does not
fit in the memory

= Dependent on the order of sample presentation
= Should be avoided when possible

