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Today

=  Continue Multilayer Neural Networks (MNN)
= Training/testing/validation curves
= Practical Tips for Implementation
= Concluding Remarks on MNN



MNN Training

training time

Large training
error: in the
beginning random
decision regions
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Small training
error: decision
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Zero training
error: decision
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perfectly, but we
overfited the
network



MNN Learning Curves

Training data: data on which learning (gradient descent for
MNN) is performed

Test data: used to assess network generalization

capabilities ((o‘
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Test error first goes down, but then goes up since at some
point we start to overfit the network to the training data



Learning Curves

classification error

f >
J training time

= this is a good time to stop training, since after this time we
start to overtfit

= However, stopping criterion is part of training phase, we
cannot use test data for anything that has to do with the
learning phase



Learning Curves

= (Create a third separate
data set called validation
data:

= validation data is used to
determine “parameters”, in
this case when learning
should stop

stop training
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= Stop training after the first local minimum on validation data
=  We are assuming performance on test data will be similar to

performance on validation data



Data Sets

= Training data
= data on which learning is performed
= Validation data

= validation data is used to determine any free
parameters of the classifier

= Kk in the knn neighbor classifier
= hfor parzen windows
= number of hidden layers in the MNN
= efc
» Test data

= used to assess network generalization capabilities



Practical Tips for BP: Momentum

Gradient descent finds only a local minima

= not a problem if J(w) is small at a local minima. Indeed,
we do not wish to find w s.t. J(w) = 0 due to overfitting
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Practical Tips for BP: Momentum

= Momentum: popular method to avoid local minima
and also speeds up descent in plateau regions
= weight update at time t is Aw' = w® — "

= add temporal average direction in which weights have
been moving recently
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direction
= at a=0, equivalent to gradient descent

= at a= 1, gradient descent is ignored, weight update
continues in the direction in which it was moving
previously (momentum)

= usually, ¢ is around 0.9



Practical Tips for BP: Activation Function

Gradient descent will work with any continuous f
however some choices are better than others

Desirable properties of f:

= Continuous and differentiable Nonlinearity to express
nonlinear decision boundaries

= Saturation, that is fhas minimum and maximum values
(-a and b). Keeps and weights w, v bounded, thus
training time down

= Monotonicity so that activation function itself does not
iIntroduce additional local minima

= Linearity for a small values of net, so that network can
produce linear model, if data supports it

= antisymmetric, that is f(-1) = -f(1), leads to faster
learning



Practical Tips for BP: Activation Function

Sigmoid activation function f satisfies all of the
above properties
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Convenient to set o= 1.716,

Asymptotic values ¥1.716
Linear range is roughly for —1 < net < 1



Practical Tips for BP: Target Values

= For sigmoid function, to represent class c, use
Ly
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= Always use values less than asymptotic values
for target

= For small error, need tto be close to z = f(net)

= For any finite value of net, f(net) never reaches the
asymptotic value

= The error will always be too large, training will never
stop, and weights w,v will go to infinity



Practical Tips for BP: Normalization

= Each feature of input data should be normalized

= Suppose we measure fish length in meters and
weight in grams
= Typical sample [length = 0.5, weight = 3000]
= Feature length will be basically ignored by the network
= |f length is in fact important, learning will be VERY slow



Practical Tips for BP: Normalization

= Normalize each feature i to be of mean 0 and
variance 1
= First for each feature i, compute var[x{)] and mean [x\]
= Then o X —mean(x?)
X' =
‘ Jvar(x?)
= (Cannot do this for online version of the algorithm since
data is not available all at once

= |f there are a lot of highly correlated or redundant
features, can reduce dimensionality with PCA

= Test samples should be subjected to the same
transformations as the training samples



Practical Tips for BP: # of Hidden Units

= # of input units = number of features, # output units = #
classes. How to choose N, the # of hidden units?

= N, determines the expressive power of the network

= Too small Ny may not be sufficient to learn complex
decision boundaries

= Too large Ny may overfit the training data resulting
IN poor generalization
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Practical Tips for BP: # of Hidden Units

= Choosing Ny is not a solved problem

= Rule of thumb

= if total number of training samples is n, choose N, so
that the total number of weights is n/10

= total number of weights = (# of w) + (# of v)

= (Can choose N, which gives the best performance
on the validation data



Practical Tips for BP: Initializing Weights

= Do not set either wor vto O
= Rule of thumb for our sigmoid function
= (Choose random weights from the range
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Practical Tips for BP: Learning Rate

As any gradient descent algorithm,
backpropagation depends on the learning rate n

Rule of thumb n = 0.1
However we can adjust » at the training time

The objective function J should decrease during
gradient descent

= |f it oscillates, 7 is too large, decrease it

= |f it goes down but very slowly, 7 is too
small,increase it



Practical Tips for BP: Weight Decay

= To simplify the network and avoid overfitting, it is
recommended to keep the weights small

= |Implement weight decay after each weight update:
w™ =w(1-¢), 0<e<1
= Additional benefit is that “unused” weights grow

small and may be eliminated altogether

= A weight is “unused” if it is left almost unchanged by the
backpropagation algorithm



Practical Tips for BP: # Hidden Layers

Network with 1 hidden layer has the same
expressive power as with several hidden layers

For some applications, having more than 1 hidden
layer may result in faster learning and less hidden
units overall

However networks with more than 1 hidden layer
are more prone to the local minima problem



MNN as Nonlinear Mapping

this module implements this module implements
nonlinear input mapping @ linear classifier (Perceptron)




MNN as Nonlinear Mapping

= Thus MNN can be thought as learning 2 things at
the same time

= the nonlinear mapping of the inputs
= linear classifier of the nonlinearly mapped inputs



MNN as Nonlinear Mapping

original feature
space X, patterns
are not linearly
separable
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MNN finds nonlinear

mapping y=¢(x) to 2
dimensions (2 hidden
units); patterns are
almost linearly
separable

g

MNN finds nonlinear
mapping y=¢(x) to 3
dimensions (3 hidden
units) that; patterns
are linearly separable



Concluding Remarks

= Advantages

= MNN can learn complex mappings from inputs to
outputs, based only on the training samples

= Easy to use
= Easy to incorporate a lot of heuristics

= Disadvantages

= |tis a “black box”, that is difficult to analyze and predict
its behavior

= May take a long time to train
= May get trapped in a bad local minima
= Alot of “tricks” to implement for the best performance



