
CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 14

Today

� Continue Multilayer Neural Networks (MNN)
� Training/testing/validation curves
� Practical Tips for Implementation
� Concluding Remarks on MNN

MNN Training

training time

Large training
error: in the
beginning random
decision regions

Small training
error: decision
regions improve
with time

Zero training
error: decision
regions separate
training data
perfectly, but we
overfited the
network

MNN Learning Curves
� Training data: data on which learning (gradient descent for

MNN) is performed
� Test data: used to assess network generalization

capabilities

training time
cl

as
si

fic
at

io
n

er
ro

r

training error

testin
g erro

r

� Training error typically
goes down, since with
enough hidden units, can
find discriminant function
which classifies training
patterns exactly

� Test error first goes down, but then goes up since at some
point we start to overfit the network to the training data

Learning Curves

training time

cl
as

si
fic

at
io

n
er

ro
r

training error

testin
g erro

r

� this is a good time to stop training, since after this time we
start to overfit

� However, stopping criterion is part of training phase, we
cannot use test data for anything that has to do with the
learning phase

Learning Curves

� Create a third separate
data set called validation
data:

� validation data is used to
determine “parameters”, in
this case when learning
should stop

� Stop training after the first local minimum on validation data
� We are assuming performance on test data will be similar to

performance on validation data

stop training

Data Sets
� Training data

� data on which learning is performed
� Validation data

� validation data is used to determine any free
parameters of the classifier
� k in the knn neighbor classifier
� h for parzen windows
� number of hidden layers in the MNN
� etc

� Test data
� used to assess network generalization capabilities

Practical Tips for BP: Momentum

� Gradient descent finds only a local minima
� not a problem if J(w) is small at a local minima. Indeed,

we do not wish to find w s.t. J(w) = 0 due to overfitting

J(w)

global minimum

reasonable local
minimum

� problem if J(w) is
large at a local
minimum w

J(w)

global minimum

bad local
minimum

Practical Tips for BP: Momentum

� Momentum: popular method to avoid local minima
and also speeds up descent in plateau regions
� weight update at time t is

� at αααα = 0, equivalent to gradient descent
� at αααα = 1, gradient descent is ignored, weight update

continues in the direction in which it was moving
previously (momentum)

� usually, αααα is around 0.9

(((()))) (((()))) (((()))) (((())))11 1 −−−−++++ ∆∆∆∆++++��������
����

��������

����

∂∂∂∂
∂∂∂∂−−−−++++==== ttt w
w
J

ww ααααηηηηαααα

� add temporal average direction in which weights have
been moving recently

(((()))) (((()))) (((())))1−−−−−−−−====∆∆∆∆ ttt www

previous
directionsteepest descent

direction

Practical Tips for BP: Activation Function

� Gradient descent will work with any continuous f
however some choices are better than others

� Desirable properties of f :
� Continuous and differentiable Nonlinearity to express

nonlinear decision boundaries
� Saturation, that is f has minimum and maximum values

(-a and b). Keeps and weights w, v bounded, thus
training time down

� Monotonicity so that activation function itself does not
introduce additional local minima

� Linearity for a small values of net, so that network can
produce linear model, if data supports it

� antisymmetric, that is f(-1) = -f(1), leads to faster
learning

Practical Tips for BP: Activation Function

� Sigmoid activation function f satisfies all of the
above properties

(((()))) netnet

netnet

ee
ee

netf ⋅⋅⋅⋅−−−−⋅⋅⋅⋅

⋅⋅⋅⋅−−−−⋅⋅⋅⋅

++++
−−−−==== ββββββββ

ββββββββ

αααα

� Convenient to set αααα = 1.716, β β β β = 2/3

� Linear range is roughly for –1 < net < 1
� Asymptotic values ����1.716

Practical Tips for BP: Target Values
� For sigmoid function, to represent class c, use

(((())))

����
����
����
����

����

����

����
����
����
����

����

����

−−−−

−−−−

====

1

1

1

�

�
ct c th row

� Always use values less than asymptotic values
for target
� For small error, need t to be close to z = f(net)
� For any finite value of net, f(net) never reaches the

asymptotic value
� The error will always be too large, training will never

stop, and weights w,v will go to infinity

Practical Tips for BP: Normalization

� Each feature of input data should be normalized

� Suppose we measure fish length in meters and
weight in grams
� Typical sample [length = 0.5, weight = 3000]
� Feature length will be basically ignored by the network
� If length is in fact important, learning will be VERY slow

Practical Tips for BP: Normalization

� If there are a lot of highly correlated or redundant
features, can reduce dimensionality with PCA

� Test samples should be subjected to the same
transformations as the training samples

� Normalize each feature i to be of mean 0 and
variance 1
� First for each feature i, compute var [x(i)] and mean [x(i)]
� Then (((())))

(((()))) (((())))(((())))
(((())))(((())))i

ii
i

x

xmeanx
x k

k var

−−−−
←←←←

� Cannot do this for online version of the algorithm since
data is not available all at once

Practical Tips for BP: # of Hidden Units
� # of input units = number of features, # output units = #

classes. How to choose NH, the # of hidden units?

� NH determines the expressive power of the network
� Too small NH may not be sufficient to learn complex

decision boundaries
� Too large NH may overfit the training data resulting

in poor generalization

Practical Tips for BP: # of Hidden Units
� Choosing NH is not a solved problem
� Rule of thumb

� if total number of training samples is n, choose NH so
that the total number of weights is n/10

� total number of weights = (# of w) + (# of v)

� Can choose NH which gives the best performance
on the validation data

Practical Tips for BP: Initializing Weights

� Do not set either w or v to 0
� Rule of thumb for our sigmoid function

� Choose random weights from the range

d
w

d ji
11 <<<<<<<<−−−−

H
kj

H N
1v

N
1 <<<<<<<<−−−−

Practical Tips for BP: Learning Rate

� As any gradient descent algorithm,
backpropagation depends on the learning rate ηηηη

� Rule of thumb ηηηη = 0.1
� However we can adjust ηηηη at the training time
� The objective function J should decrease during

gradient descent
� If it oscillates, ηηηη is too large, decrease it
� If it goes down but very slowly, ηηηη is too

small,increase it

Practical Tips for BP: Weight Decay

� To simplify the network and avoid overfitting, it is
recommended to keep the weights small

� Implement weight decay after each weight update:
(((()))) 10,1 <<<<<<<<−−−−==== εεεεεεεεoldnew ww

� Additional benefit is that “unused” weights grow
small and may be eliminated altogether
� A weight is “unused” if it is left almost unchanged by the

backpropagation algorithm

Practical Tips for BP: # Hidden Layers

� Network with 1 hidden layer has the same
expressive power as with several hidden layers

� For some applications, having more than 1 hidden
layer may result in faster learning and less hidden
units overall

� However networks with more than 1 hidden layer
are more prone to the local minima problem

MNN as Nonlinear Mapping

x(1)

x(2)

x(d)

z1

zm

this module implements
linear classifier (Perceptron)

this module implements
nonlinear input mapping ϕϕϕϕ

MNN as Nonlinear Mapping

� Thus MNN can be thought as learning 2 things at
the same time
� the nonlinear mapping of the inputs
� linear classifier of the nonlinearly mapped inputs

MNN as Nonlinear Mapping

original feature
space x; patterns
are not linearly
separable

MNN finds nonlinear
mapping y=ϕϕϕϕ(x) to 2
dimensions (2 hidden
units); patterns are
almost linearly
separable

MNN finds nonlinear
mapping y=ϕϕϕϕ(x) to 3
dimensions (3 hidden
units) that; patterns
are linearly separable

Concluding Remarks

� Advantages
� MNN can learn complex mappings from inputs to

outputs, based only on the training samples
� Easy to use
� Easy to incorporate a lot of heuristics

� Disadvantages
� It is a “black box”, that is difficult to analyze and predict

its behavior
� May take a long time to train
� May get trapped in a bad local minima
� A lot of “tricks” to implement for the best performance

