CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 15



Today

= New Topic: Unsupervised Learning
= Supervised vs. unsupervised learning

= Unsupervised learning
= Next Time: parametric unsupervised learning
= Today: nonparametric unsupervised learning = clustering
= Proximity Measures
= Criterion Functions
= Flat Clustering

= k-means
= Hierarchical Clustering
= Divisive

= Agglomerative



Supervised vs. Unsupervised Learning

= Up to now we considered supervised learning
scenario, where we are given
1. samples xg,..., X,
2. class labels for all samples x4,..., X,

= This is also called learning with teacher, since correct
answer (the true class) is provided

= |n the next few lectures we consider
unsupervised learning scenario, where we are
only given
1. samples xq,..., X,

= This is also called learning without teacher, since
correct answer is not provided

= do not split data into training and test sets



Unsupervised Learning

= Data is not labeled p rfg;f)
S =SV T “easier”

1. Parametric Approach

= assume parametric distribution of data
= estimate parameters of this distribution
= much “harder” than supervised case

= NonParametric Approach

= group the data into clusters, each cluster (hopefully)
says something about categories (classes) present in

the data ?

little is
known
“harder”




Why Unsupervised Learning?

= Unsupervised learning is harder

= How do we know if results are meaningful? No answer
labels are available.
= Let the expert look at the results (external evaluation)
= Define an objective function on clustering (internal evaluation)

=  We nevertheless need it because

1. Labeling large datasets is very costly (speech recognition)
= sometimes can label only a few examples by hand

2. May have no idea what/how many classes there are (data
mining)

3. May want to use clustering to gain some insight into the
structure of the data before designing a classifier
=  Clustering as data description



Clustering
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= Seek “natural” clusters in the data

= Whatis a good clustering?
= Internal (within the cluster) distances should be small
= external (intra-cluster) should be large

= Clustering is a way to discover new
categories (classes)



What we Need for Clustering

1. Proximity measure, either
= similarity measure s(x;,x,): large if x;x, are similar
= dissimilarity(or distance) measure d(x;,x,): small if x;,x, are similar

large d, small s large s, small d
O O *—O

"y
s »
.....
o Y
.

’ R
. L4
L A N s
" - “ay, *
. ay D
’ ‘. ’ ...« .
] ’ ’ : .
i L
L]
4 ’ A ‘
’ .: -’.
@ anreES
- *
* * v
. o . o .
* o 2 P .

Taa g .* * L
..-"-'I‘ ------ ‘s AETT LSS s
.... * S

«* " . g

. v .

. JREETTTTL : .
L L]
n L >
o » *
g BP0 *
*
. : R S
" g
n Yams

* .

. » e 0
IIIIIIIIIII Ll

-
good cl ster'ng bad CIUSterlng

3. Algorithm to compute clustering
=  For example, by optimizing the criterion function



How Many Clusters?
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3 clusters or 2 clusters?

= Possible approaches
1. fix the number of clusters to k

2. find the best clustering according to the criterion
function (number of clusters may vary)



Proximity Measures

= good proximity measure is VERY application
dependent

= (Clusters should be invariant under the transformations
“natural” to the problem

= For example for object recognition, should have
iInvariance to rotation

distance

= For character recognition, no invariance to rotation

/distam
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Distance (dissimilarity) Measures

= Euclidean distance t
)= | 350 - 51
= translation invarigﬁ
= Manhattan (city block) distance A
d(x,,x;)= Zd: x{ — x{)
= approximation tlgEucIidean distance,
cheaper to compute
A

= Chebyshev distance

d(x;,x;)=max | x¥ - x|

= approximation to Euclidean distance,
cheapest to compute



Similarity Measures

= Cosine similarity: t
X/ x,
S(Xisxj)= !
11 111 x; 1l
= the smaller the angle, the larger the >
similarity

= scale invariant measure
= popular in text retrieval

= Correlation coefficient
= popular in Iimage processing

> (x® % fx0 = x;)

s(x,.,xj)= el

{Z (x{® ‘}’)zé(xg.“ _Xi)zr

d
k=1




Feature Scale

= old problem: how to choose appropriate relative
scale for features?
= [length (in meters or cms?), weight(in in grams or kgs?)]
= In supervised learning, can normalize to zero mean unit
variance with no problems

= In clustering this is more problematic, if variance in
data is due to cluster presence, then normalizing
features is not a good thing

before normalization after normalization



Simplest Clustering Algorithm

= Having defined a proximity function, can develop a
simple clustering algorithm

= go over all sample pairs, and put them in the same cluster
if the distance between them is less then some threshold
distance d, (or if similarity is larger than s)

= Pros: simple to understand and implement

= Cons: very dependent on d, (or s,), automatic choice of d,
(or sp)is not an easily solved issue

d, too small: d, larger: d, too large:
too many clusters reasonable clustering too few clusters
oy o @
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Criterion Functions for Clustering

= Have samples x;,...,X,
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= (Can define a criterion function J(D,,...,D,) which
measures the quality of a partitioning D,,...,D,

= Then the clustering problem is a well defined
problem

= the optimal clustering is the partition which optimizes the
criterion function



SSE Criterion Function

= Let n; be the number of samples in D;, and define
the mean of samples in in D;
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= Then the sum-of-squared errors criterion function (to
minimize) is:
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= Note that the number of clusters, ¢, is fixed



SSE Criterion Function
Jsse = Sl x—p I

i=1 Xe D,'

= SSE criterion appropriate when data forms compact
clouds that are relatively well separated

Q
= SSE criterion favors equally sized clusters, and may
not be appropriate when “natural” groupings have

very different sizes
large Jsor small Jgge




Failure Example for Jso
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= The problem is that one of the “natural” clusters is
not compact (the outer ring)



Other Minimum Variance Criterion Functions

=  We can rewrite the SSE as

Jooe =5 1 x= 12 s,
SSE Zz M 2;'1'

i=1 Xe Di
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d; = average Euclidian
distance between all pairs
of samples in D;

= (Can obtain other criterion functions by replacing
|x - y||2 by any other measure of distance between

points in D;

= Alternatively can replace d; by the median,
maximum, etc. instead of the average distance



Maximum Distance Criterion

= Consider Jmax=;n,- maxIIX—yllz}

1 _yED",XEDi

= Solves previous case = However J,,., IS not robust to
outliers

smallest J, ., smallest .,




Other Criterion Functions

Recall definition of scatter matrices
= gcatter matrix for ith cluster S;= Y (x—)(x- ;)"

Xe Di

= within the cluster scatter matrix s, = Zc:s,.
i=1

Determinant of §,, roughly measures the square of

the volume

Assuming S,, is nonsingular, define determinant

criterion function: .
2.S

= Jyis invariant to scaling of the axis, and is useful if there
are unknown irrelevant linear transformations of the data

J, =S, |=




Iterative Optimization Algorithms

Now have both proximity measure and criterion
function, need algorithm to find the optimal clustering

Exhaustive search is impossible, since there are
approximately c¢"/¢! possible partitions

Usually some iterative algorithm is used
1. Find a reasonable initial partition

2. Repeat: move samples from one group to another s.t. the
objective function J is improved
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Iterative Optimization Algorithms

= |terative optimization algorithms are similar to
gradient descent

= move in the direction of descent (ascent), but not in the
steepest descent direction since have no derivative of the
objective function

= solution depends on the initial point
= cannot find global minimum

=  Main Issue

= How to move from current partitioning to the one which
Improves the objective function



K-means Clustering

=  We now consider an example of iterative
optimization algorithm for the special case of Jgge
objective function

K
Jsse =Z Z” X—U, |I?

i=1 Xe Di

= for a different objective function, we need a different
optimization algorithm, of course

=  Fix number of clusters to k (¢ = k)

= k-means is probably the most famous clustering
algorithm

= |t has a smart way of moving from current partitioning to
the next one



K-means Clustering

1. Initialize
= pick k cluster centers arbitrary

= assign each example to closest
center

2. compute sample
means for each cluster

3. reassign all samples to the
closest mean

4. If clusters changed at step 3, go to step 2



K-means Clustering
= Consider steps 2 and 3 of the algorithm

2. compute sample means for each cluster

3. reassign all samples to the closest mean

If we represent clusters
by their old means, the
error has gotten smaller

N\~

/ |




K-means Clustering

3. reassign all samples to the closest mean

If we represent clusters
by their old means, the
error has gotten smaller

N\~

/ |

= However we represent clusters by their new
means, and mean is always the smallest
representation of a cluster

— Z—n X-z =% Z%(II x|?-2x'z+|| z|?) = 2 (- x+2) =0

XeD xeD; xeD;

Zx

1 xeD;




K-means Clustering

= We just proved that by doing steps 2 and 3, the
objective function goes down

= In two step, we found a “smart “ move which decreases
the objective function

= Thus the algorithm converges after a finite number
of iterations of steps 2and 3

= However the algorithm is not guaranteed to find a
global minimum
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K-means Clustering

= Finding the optimum of Jggegis NP-hard

= |n practice, k-means clustering performs usually
well

= |tis very efficient

= |ts solution can be used as a starting point for
other clustering algorithms

= Still 100’s of papers on variants and improvements
of k-means clustering every year



Hierarchical Clustering
Up to now, considered “flat” clustering
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For some data, hierarchical clustering is more
appropriate than “flat” clustering

= Hierarchical clustering %




Hierarchical Clustering: Biological Taxonomy

animal plant
. : ‘ seed spore
with spine | [ no spine producing progucing
\ o
dog] Leat [E/7Es apple| | rose| mushroom| [mold




Hierarchical Clustering: Dendogram

= prefered way to represent a hierarchical clustering
IS a dendogram

= Binary tree

= Level k corresponds to
partitioning with n-k+1
clusters

= if need k clusters, take
clustering from level n-k+1

= |f samples are in the same
cluster at level k, they stay in the
same cluster at higher levels
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= dendogram typically shows the similarity of
grouped clusters

similarity scale




Hierarchical Clustering: Venn Diagram

= (Can also use Venn diagram to show hierarchical
clustering, but similarity is not represented
qguantitatively




Hierarchical Clustering

= Algorithms for hierarchical clustering can be
divided into two types:
1. Agglomerative (bottom up) procedures
= Start with n singleton clusters
= Form hierarchy by merging most similar clusters
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2. Divisive (top bottom) procedures
= Start with all samples in one cluster
= Form hierarchy by splitting the “worst” clusters



Divisive Hierarchical Clustering

=  Any “flat” algorithm which produces a fixed number
of clusters can be used
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Agglomerative Hierarchical Clustering

2.

initialize with each example in . 0H@; 8 { o
singleton cluster
while there is more than 17 cluster ﬁ
1. find 2 nearest clusters 0:e: | ® . @
2. merge them

Four common ways to measure cluster distance
1.

minimum distance d,..(D,,D,)= min Il x-¥ |

XEDi,yE DI

maximum distance dmax(D,-,D,-)= max !l x-yll

XEDi,yEDj

average distance davg(D,,Di)= L > Dllx-yll

ninj xeD; yeD;

mean distance d ean(D;sD; ) =1 12— 14 |



Single Linkage or Nearest Neighbor

= Agglomerative clustering with minimum distance
dmin(Di’Di)= min ll x-yll

XGDi,yEDj

3
.\. 11/./2.
5 4
= generates minimum spanning tree
= encourages growth of elongated clusters

= disadvantage: very sensitive to noise
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Complete Linkage or Farthest Neighbor

= Agglomerative clustering with maximum distance
dmax(DiiDj)= maX ” X_y ”

XEDi,yEDi

= Encourages compact clusters
= Does not work well if elongated clusters present

* d.,(D,D,)< d,,,(D,,D,)

max (

= thus D, and D, are merged instead of D, and D,



Average and Mean Agglomerative Clustering

= Agglomerative clustering is more robust under the
average or the mean cluster distance

e(01D)=——3 | x-y|

ninj xeD; yeD;

d

dmean(Di!Dj)=” Hi _,uj ”

= mean distance is cheaper to compute than the
average distance

= unfortunately, there is not much to say about
agglomerative clustering theoretically, but it does
work reasonably well in practice



Agglomerative vs. Divisive

= Agglomerative is faster to compute, in general

= Divisive may be less “blind” to the global structure
of the data

Divisive Agglomerative
when taking the first when taking the first
step (split), have access to step merging, do not
all the data; can find the consider the global
best possible split in 2 structure of the data, only
parts look at pairwise structure

RRPP




Summary

= (Clustering (nonparametric learning) is useful for
discovering inherent structure in data

= (Clustering is iImmensely useful in different fields

= (Clustering comes naturally to humans (in up to 3
dimensions), but not so to computers

= |t is very easy to design a clustering algorithm, but
it is very hard to say if it does anything good

= General purpose clustering is unlikely to exist, for
best results, clustering should be tuned to
application at hand



