CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 17



Today

= Parametric Unsupervised Learning

= Expectation Maximization (EM)
= one of the most useful statistical methods
= oldest version in 1958 (Hartley)
= seminal paper in 1977 (Dempster et al.)

= can also be used when some samples are missing
features



Unsupervised Learning

In unsupervised learning, where we are only given
samples x;,..., X,, without class labels

Last 2 lectures: nonparametric approach

(clustering)
Today, parametric approach
= assume parametric distribution of data

= estimate parameters of this distribution
= much “harder” than the supervised learning case



Parametric Unsupervised Learning

= Assume the data was generated by a model with
known shape but unknown parameters

P(x|6)

O
>“:‘

= Advantages of having a model

= @Gives a meaningful way to cluster data

= adjust the parameters of the model to maximize the probability
that the model produced the observed data

= (Can sensibly measure if a clustering is good
= compute the likelihood of data induced by clustering

= (Can compare 2 clustering algorithms
= which one gives the higher likelihood of the observed data?



Parametric Supervised Learning

= |et us recall supervised parametric learning
= have mclasses
= have samples x,,..., X, each ofclass 7, 2,.... m
= suppose D; holds samples from class i
= probability distribution for class /' is p/(x|6)



Parametric Supervised Learning

= Use the ML method to estimate parameters 6,
= find g, which maximizes the likelihood function F(8)

p(Dilei)=Hp(X/0i)=F(9i)

Xe Di

= or, equivalently, find 8, which maximizes the log
likelihood (8,

I(gi)zlnp(Di 16;) = Zlnp(xlﬁ,-)

xeD;

i g
Voo Lt
A o Ep
6, =argmax[inp(D, |6,)] 6, =argmax[inp(D, | 6,)]

6, 6,



Parametric Supervised Learning

= now the distributions are fully specified
= can classify unknown sample using MAP classifier




Parametric Unsupervised Learning

= |n unsupervised learning, no one tells us the true
classes for samples. We still know
= have mclasses
= have samples x,,..., X, each of unknown class
= probability distribution for class i is p/{x|6)
= (Can we determine the classes and parameters
simultaneously?




Example: MRI Brain Segmentation

segmentatio> |

Picture from M. Leventon

In MRI brain image, different brain tissues have different
Intensities
Know that brain has 6 major types of tissues

Each type of tissue can be modeled by a Gaussian N(u;,c7)
reasonably well, parameters u;, 07 are unknown

Segmenting (classifying) the brain image into different
tissue classes is very useful

= don’t know which image pixel corresponds to which tissue (class)
= don’t know parameters for each N(;, 67



Mixture Density Model

= Model data with mixture density
component;k densities

m [ \
p(x16)=Y plx|c,6,)P(c,)
= ——

mixing parameters

= where 6=16,,...,6, }
= Plc,)+P(c,)+...+Plc,)="1
= To generate a sample from distribution p(x|6)

= first select class j with probability P(c;)
= then generate x according to probability law p(x|c;,6;)

Q
p(xic,,6,) Y p(X|C5,6;)

pxic,,6,)




Example: Gaussian Mixture Density

=  Mixture of 3 Gaussians 10/ PAx)
T
pz(x)sN(Ia,al,[f,’ 2D I p’(x) % iy

Polx)= N([7’_7] 16 gD e PAX) |

p(x)=0.2p,(x)+ 0.3p,(x)+0.5p,(x)



Mixture Density

p(x16)=3 plx|c;6,)P(c,)
J=1
P(c,),..., P(c,,) can be known or unknown

Suppose we know how to estimate 4,,..., 6,, and
P(c,),..., P(c,)
Can “break apart” mixture p(x|8) for classification

To classify sample x, use MAP estimation, that is
choose class i which maximizes

P(C; | X,6;) = p(Xx[c;,6, )P( )

J

probab///ty of component i probab///ty of
[0 generate x component i



ML Estimation for Mixture Density

S plx1c;6,)p,

j=1

p(x | 6,p) = Zp(x|c,,0) (c;)

=  (Can use Maximum Likelihood estimation for a
mixture density; need to estimate

" p1=P(¢cy),..., pm=P(Cp), and p={p;,..., P}
= As in the supervised case, form the logarithm
likelihood function

1(9,,0)=|nP(DI9,,0)=kZ:,|nP(Xk|9,0 ;'“[ZP( 6,)p }



ML Estimation for Mixture Density

16, p) = gln[gp(xlcj,ﬁj)pi}

need to maximize I(6,p) with respect to € and p

As you may have guessed, I(8, p) is not the easiest
function to maximize

= |f we take partial derivatives with respect to 6, p and
set them to 0, typically we have a “coupled” nonlinear
system of equation

= usually closed form solution cannot be found

We could use the gradient ascent method

= in general, it is not the greatest method to use, should
only be used as last resort

There is a better algorithm, called EM



Mixture Density

Before EM, let’s look at the mixture density again
p(x16,p)=> plx|c;,6,)p,
J=1

Suppose we know how to estimate 4,,..., 8,, and
P1s-+Pm
= Estimating the class of x is easy with MAP, maximize
pP(x | Cisei)P(ci)z pP(x|c;,6,)p

Suppose we know the class of samples x,,..., X,
= This is just the supervised learning case, so estimating
é,,..., 8, and p,,....p,, IS easy

é,. = argmax|In p(D, | 6,)] p, = | D, |
6,

This is an example of chicken-and-egg problem

= ME algorithm approaches this problem by adding
“hidden” variables



Expectation Maximization Algorithm

= EMis an algorithm for ML parameter estimation
when the data has missing values. It is used when
1. data is incomplete (has missing values)

= some features are missing for some samples due
to data corruption, partial survey responces, etc.

= This scenario is very useful, covered in section 3.9

2. Suppose data Xis complete, but p(X|8) is hard to
optimize. Suppose further that introducing certain
hidden variables U whose values are missing, and
suppose it is easier to optimize the “complete”
likelihood function p(X,U|8). Then EM is useful.

= This scenario is useful for the mixture density
estimation, and is subject of our lecture today

= Notice that after we introduce artificial (hidden)
variables U with missing values, case 2 is completely
equivalent to case 1



EM: Hidden Variables for Mixture Density

px16)=Y plx|c;,0,)p,

= For simplicity, assume Compo(nent )densities are
1 X_ﬂj 2

0 )= exp| —

plx1c;6,)=—— p[ — ]

= assume for now that the variance is known
= need to estimate 6= {u,,..., 4}
A

VANFAN

= |f we knew which sample came from which
component (that is the class label), the ML

parameter estimation is easy

= Thus to get an easier problem, introduce hidden
variables which indicate which component each

sample belongs to




EM: Hidden Variables for Mixture Density

= For 1<i<n, 1<k <m, define hidden variables z{®

) _ [1 If sample i was generated by component k
! 0 otherwise

x, > 1x;,2",...,z™}

]

= z{K are indicator random variables, they indicate
which Gaussian component generated sample x;

= Let z;={z{1),..., z{m}, indicator r.v. corresponding to
samplex

= Conditioned on z, , distribution of x; is Gaussian
| zl! N(luki )

= where kis s.t. z,-(k)= 1



EM: Joint Likelihood

Let z;={z{V),..., z{™}, and Z = {z,,..., Z,}

The complete likelihood is

S

PAX,Z[6) = P(Xipes Xps Zyseenn 2, 16) = [ P(x,,2, 16)
i=1
—Hp p(z,)
j\ )
Y Y

gaUSS/an part ofpc

If we actually observed Z, the log likelihood
In[p(X,Z] 6] would be trivial to maximize with respect
to dand p;

The problem, is, of course, is that the values of Z
are missing, since we made it up (thatis Z'is
hidden)



EM Derivation

= |nstead of maximizing In[p(X,Z]6)] the idea behind
EM is to maximize some function of In[p(X,Z]6)],

usually its expected value
E,[Inp(X,Z|6)]

= |f @makes In[p(X,Z]6)] large, then 8 tends to make
ElInp(X,Z]6)] large
= the expectation is with respect to the missing data Z

= that is with respect to density p(Z|X, 60

= however @ is our ultimate goal, we don’'t know 6!



EM Algorithm

= EM solution is to iterate

1. start with initial parameters 6

iterate the following 2 step until convergence

E. compute the expectation of log likelihood
with respect to current estimate 6 and X.
Let’s call it Q(6|6(D)

Q616Y)=E,lInp(x,2|6)| X,6"]

M. maximize Q(8|6)

8" = argmax Qe | 8?)
(7



EM Algorithm: Picture

In p({ |1 6)

® .

optimal value for @ 0
we’d like to find it but
optimizing p(X|[6) is

very difficult



EM Algorithm: Picture

Inp(X,Z|0) This curve

unobserved Z
corresponding
fo observed

data X

A

corresponds to the
correct Z, we should
optimize for but Z is
not observed

for mixture estimation,

there are m" curves, each
curve corresponds to a
particular assignment of
samples to classes



EM Algorithm: Picture
Inp(X,Z|6)

A

N\E:[Inp(x,2]6)| X,6"]




EM Algorithm

= |t can be proven that EM algorithm converges to the
local maximum of the log-likelihood

Inp(X | 6)

= Why is it better than gradient ascent?

= Convergence of EM is usually significantly taster, in the
beginning, very large steps are made (that is likelihood
function increases rapidly), as opposed to gradient
ascent which usually takes tiny steps

= gradient descent is not guaranteed to converge

= recall all the difficulties of choosing the appropriate
learning rate



EM for Mixture of Gaussians: E step

= Let's come back to our example p(x|9)=_ijp(XI0,-,9,-)p;

1 (X_ﬂj)z =
et 0)- -z - 52
= need to estimate 6= {u,,..., 4, and p,,..., P,

= for1<i<n,1<k<m ,define z¥

) _ [1 If sample i was generated by component k
" 0 otherwise

= as before, z;={z{V,..., z™}, and Z={z,,..., z,}

= We need log-likelihood of observed X and hidden Z
Inp(X,Z|H)=Inﬁp(x,.,z,. 16) Zlnp i12;,6)P(z,)



EM for Mixture of Gaussians: E step

= We need log-likelihood of observed X and hidden Z
Inp(X,Z|H)=Inﬁp(x,.,z,. |16) Zlnp i12;,0)P(z,)

= First let’s rewrite p(x;|z,,6)P(z;)

p(x;|z;,6)P(z

)=




EM for Mixture of Gaussians: E step

= |og-likelihood of observed X and hidden Z'is
Inp(X,Z|6)= Zlnp | z,,0)P(z,)

_’Z‘:Inn{ GXP( - > O./;k)sz(z(k) 1)}2'(”
_ ; gln{a 12” ex [_( ';G!:k)ZJP(zlf") ) 1)}2,@)

=

P(sample x, from class k )= P(c, )= p,

1 X;— 1, )°
= Zzﬁ"){lno_ 27[—( '20_“:") +Inpk}



EM for Mixture of Gaussians: E step

= |og-likelihood of observed X and hidden Z'is
Inp(X,Z|6)= Ziz,(" [Ino_\;f (X"_'L:")z +Inpk}

20

= Forthe E step, we must compute

al6169)=a(0| 1?,ees 1, p0,...; p9) = E,|Inp(X,286)| X,6"]

—E, ZZz(k)[ln o (X"“jk)2+|npg>D

\_i=1 k=1 20

EX[Za,.x,. + b} =>a,E[x,]+b

-y Ez[z,fk)][ln 1 —(X'_fk)2+lnpk]



EM for Mixture of Gaussians: E step

O)_ NN\ (k) 1 _(X,-—/tk)2
Q(H|9 )— i=1;Ez[zi ][Ino_ 27 257 +Inka

= need to compute E;[z{¥] in the above expression
E,|z¥|=0*P(z¥ =016, x,)+1* P(z¥ =1| 67, x,)

_ P(ng) =1 H(t),X-) _ p(X,- | H(f),zl(k) = 1)P(z§k) =1 H(t))

plx, | 6%)

1 2 1 2
P exp(— 5 X~ ) ) ] P exp(— 5z X = 11) )

m _ . T m 1
5Pl 16,20~ Pt =116%) S5 pf0ene{ 51 T

j=1

= we are finally done with the E step

= for implementation, just need to compute EJz{®]’s don’t
need to compute Q



EM for Mixture of Gaussians: M step

3

Qlo16"Y)= iEz[z,f“’](ln ng RCS A Inka

i k=1 20

= Need to maximize Q with respect to all parameters
= First differentiate with respect to u,

d

aﬂk (‘9|‘9t)) ZE [Z ]X ﬂk)

0

= new u, =p"" =

the mean for class k is weighted average of all samples,
and this weight is proportional to the current estimate of
probability that the sample belongs to class k



EM for Mixture of Gaussians: M step

alo10")-35 el in_f- Ut sinp,

i=1 k=1 20
= For p, we have to use Lagrange multipliers to preserve
constraint Z p, =1

* Thus we need to differentiate  F(4,p)=Ql9] 0(’))—1[51 P, —1J
j=1

n

J (k) _
aka(/l,p) ’Z:pkE[z ] A1=0 :>ZE [z ] Ap, =0

=  Summing up over all components: ZZE |29] = lek

k=1 i=1

- Since Y'Y E,[29]=n and Zpk—1 we get A=n

k=1 i=1
t+1 ZE[Z ]




EM Algorithm

The algorithm on this slide applies ONLY to univariate gaussian
case with known variances

1. Randomly initialize uq,..., 4y, P> P (With
constraint 2p;= 1)

iterate until no change in uy,..., 4y, P1s- s Pm

E. for all I, k, compute

p p( L (x—ﬂ)zj
k 2 i k
EZ[zlgk)]z m 20.

:
2./ exp(— 5z (i ﬂ,-)z)

M. for all k, do parameter update

n 12
My = %;EZ[ZIU()]XI' Pk = ;;Ez[z§k)]




EM Algorithm

= For the more general case of multivariate
Gaussians with unknown means and variances

- Estep: E[z0]-LePX/tts)

;p,p(X/ﬂ,-,E,-)
where p(x/u,Z,)= (27;)0’/21\2,;’\”2 exp[—%(x—uk ) 2 (x — )}
= M step:
P =~ E,[2¥)] :
n i ;Ez[z,gk)](x, — 1, )X — )
, izn:Ez[Z,(k)]x,- a Zn;Ez[z,")]
= i



EM Algorithm and K-means

= k-means can be derived from EM algorithm
=  Setting mixing parameters equal for all classes,

1 (x, - )2) exp(— 2;_2 (x, — 1, )2)

20°

=— ] =m 1
;Pi exp(— 252 (x; —ﬂi)zj ;exp(— 252 (x, _:ui)z)

s

E|z]

= |fwelet o— «,then

1 ifvj, || x;—w > x; — u; |l
(k) — i k i j
E, [z,. ] {0 otherwise

= so at the E step, for each current mean, we find all
points closest to it and form new clusters

= atthe M step, we compute the new means inside
current cluster 1<
urrent clusters 1, = ;ZEZ[ka)]Xi
i=1



EM Gaussian Mixture Example




EM Gaussian Mixture Example

After first iteration




EM Gaussian Mixture Example

After second iteration




EM Gaussian Mixture Example

After third iteration




EM Gaussian Mixture Example

After 20th iteration

@.

15,




EM Example

= Example from R. Gutierrez-Osuna
= Training set of 900 examples forming an annulus

=  Mixture model with m = 30 Gaussian components of
unknown mean and variance is used

= Training:
= |nitialization:
= means to 30 random examples

= covaraince matrices initialized to be diagonal, with
large variances on the diagonal (compared to the
training data variance)
= During EM training, components with small mixing
coefficients were trimmed

= This is a trick to get in a more compact model, with
fewer than 30 Gaussian components




EM Example

lteration O Iteration 25 Iteration 50
3r 151
2+ 1L
1+ 05k
ar ok
=i 0.5
2k =1 r
3 1.5
25
150 150
i 1t
0.5- 05F
o+ ok
05} 05} 3
] kT o
s “t 7 b,
150 1.5 ; Fog 5 .
“TALT I X%, ol
5 25 2 A5 4 05 é" o5 1 5 > -2.5 2 -5 1 0.5 o 05 1 .2

from R. Gutierrez-Osuna



EM Texture Segmentation Example

Figure from “Color and Texture Based Image Segmentation Using EM and Its
Application to Content Based Image Retrieval”,S.J. Belongie et al., ICCV 1998



EM Motion Segmentation Example

Three frames from the MPEG “flower garden” sequence

e

* % % # * % =%

+ 4 % # # % = =%

Figure from “Representing Images with layers,”, by J. Wang and E.H.
Adelson, IEEE Transactions on Image Processing, 1994, c 1994, IEEE



Summary

= Advantages
= |f the assumed data distribution is correct, the
algorithm works well
= Disadvantages

= |f assumed data distribution is wrong, results
can be quite bad.

= |n particular, bad results if use incorrect number of
classes (i.e. the number of mixture components)



