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Outline

= Normal Random Variable
= Properties
= Discriminant functions



Why Normal Random Variables?

= Analytically tractable

= Works well when observation comes
form a corrupted single prototype (u)

= |s an optimal distribution of data for
many classifiers used in practice



The Univariate Normal Density

= XIS a scalar (has dimension 1)

p(x)=—" exp—1(x_”jz_
27 o 2\ o _’

Where:

L = mean (or expected value) of x
o° = variance
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FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
X — | = 2a, as shown. The peak of the distribution has value p(p) = 1/2ra. From:

Richard . Duda, Peter E. Hart, and David (. Stork, Fattern Classification. Copyright
@© 2001 by John Wiley & Sons, Inc.



Several Features

= What if we have several features x,, X,, ..., Xy
= each normally distributed
= may have different means
= may have different variances
= may be dependent or independent of each other

= How do we model their joint distribution?



The Multivariate Normal Density

= Multivariate normal density in d dimensions Is:

1
p(x)=
(zﬂ.)d/Z‘Z‘
determinant of ~

-, _

Oy " Oyq
2 =| : : :2

—O'd_’ FOIP O-d_

covariance of x, and x,

= Each x;is N(u;, o7)
= to prove this, integrate out all other features from
the joint density

1 inverse of » }

1/2 exp{—z(x—,u)’l"(x—,u)

X =[X; Xop ey Xyt

H = [ﬂ"’ Moy == aud]t

7



More on >

=r=| : . i |plays role similar to the role
04; * 04 | that o® plays in one dimension

= From X we can find out

1. The individual variances of features
X5 Xop veny Xy

2. If teatures x; and x; are
= independent g;=0
= have positive correlation ¢;>0
= have negative correlation ¢;<0



The Multivariate Normal Density

o
= If X is diagonal |,

o, o
o&,c:o
|

then the features x;,..., X;are
independent, and

p(x)=H 1 exp _(Xi_lzui)

i1t 027 20;




The Multivariate Normal Density

p(x)=6exp

normalizing
constant scalar s (single number), the closer s to 0 the larger is p(x)

= Thus P(x) is larger for smaller (x—-u)' X2 '(x—pu)
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(X—u) 27 (x—u)

= ¥ is positive semi definite (xtX x>=0)

= |f xtX x=0 for nonzero x then det(X)=0. This case is
not interesting, p(x) is not defined

1. one feature vector is a constant (has zero
variance)

2. or two components are multiples of each other
= so we will assume X'is positive definite (x{X x >0)

= |f Xis positive definite then so is X'~/



(X—u)' 27 (x—u)

= Positive definite matrix of size d by d has d distinct
real eigenvalues and its d eigenvectors are
orthogonal

= Thus If @is a matrix whose columns are normalized
eigenvectors of 2, then @-1= @t

= JP=dA where Ais a diagonal matrix with
corresponding eigenvalues on the diagonal

* Thus Z=®Ad and X1 =@pA-1 P!

= Thus if A=7? denotes matrix s.t. A2 A-12= A

1 1\!
> = [qu 2)[@1 2) = MM!



(X—u)' 27 (x—u)

= Thus
(X—pu) T (Xx—p)=(x—p) MM (x—p)=

= (W= ) (W (= 1) = M (- o f

= Thus |(x-)'=(x—p)=|M'(x- )

1

where M'= A2 @’
scaling rotation
matrix matrix

= Points x which satisfy ‘M’(x—,u)‘z =const lie on an

ellipse



(X—u) 27 (x—u)

(X—p)(x—p)
usual (Eucledian)
distance between x and u

\crease3

5y

points x at equal
Eucledian
distance from u
lie on a circle

(x—p)> "(x-u)
Mahalanobis distance

between x and u

%

Q)
& eigenvectors
9
‘ of X

Mahalanobis distance from
ulie on an ellipse: X
stretches circles to ellipses



2-d Multivariate Normal Density

= Can you see much in this graph?

0.08
0.05
0.04
0.03
0.0z
0.01
: .
B T

= At most you can see that the mean is around [0,0],
but can't really tell if x, and x, are correlated
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2-d Multivariate Normal Density

= How about this graph?

015-. -

0.1+

p(x1,x2)

0.05
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2-d Multivariate Normal Density
= | evel curves graph

= p(x) Is constant along ) |
each contour - |

= topological map of 3-d
surface \

= Now we can see much more
= X, and x; are independent
= 042 and o,? are equal

0
X1

05 1 1.5 2
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2-d Multivariate Normal Density
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2-d Multivariate Normal Density 1 =0,0]
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The Multivariate Normal Density

= |[f X has density N(u,2) then AX has density
N(Alu AXA)
= Thus X can be transformed into a spherical normal
variable (covariance of spherical density is the
identity matrix /) with whitening transform
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Discriminant Functions

= Classifier can be viewed as network which
computes m discriminant functions and selects
category corresponding to the largest discriminant

select class
giving maximim

discriminant
functions

= g,(x) can be replaced with any monotonically
increasing function, the results will be unchanged



Discriminant Functions

= The minimum error-rate classification is achieved by
the discriminant function

gi(x) = P(c; [x)=P(x/c;)P(c,)/P(x)

= Since the observation x is independent of the class,
the equivalent discriminant function is

gi(x) = P(x/c)P(c)

= For normal density, convinient to take logarithms.
Since logarithm is a monotonically increasing
function, the equivalent discriminant function is

g.(x) = In P(x/c,)+ In P(c)
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Discriminant Functions for the Normal Density

- Suppo_se we for class c¢; its class conditional density
p(x/c;) is N(u;,2;)
’

— )
p(x | CI)—(Z—T)MWGXP _E(X_ﬂi)tzi1(x_ﬂi):|

I

= Discriminant function g;(x) = In P(x/c,)H In P(c;)

= Plug in p(x/c;,) and P(c;) get
consteniyor all i

g;(x) = _%(X_:ui)tz’f(x_:ui)' d 27 - %In‘z’i‘ +|nP(c;)

g:(x)= _%(X_ﬂi)t2;1(x_ M) — %In‘z’i‘ +InP(c;)




Case ) = &°l

62 0 0] 10
= Thatis ),,= 0 o® 0 |=c*-|0 1
0 0 o° 00

= In this case, features x,, X, ,..., Xy are independent
with different means and equal variances 2

e
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Case ) = &°l

= Discriminant function
1 _ 1
gi(x)z_E(X_:ui)tz 1(X_:ui)_5|n‘z’i‘+lnp(ci)

= 1 =
—— 0 0
o 2

= Det(X)=0?9 and Z'=(1/c®)] -| o = o

° 1
0 0 —
o ? |

= Can simplify discriminant function

g,(x) = _%(X_:ui tiz(x_ﬂi)_MlnP(ci)
(o)

constant for all i

1
207

g,(x)=- (X — ;)" (x— 1) +InP(c;) =

.
=—5 zx—u[ +InP(c)




Case 2. = 0’ Geometric Interpretation

If InP(c;)=InP(c;), then
g:(x)= _‘X_:ui

decision region
for ¢,
M,

122

decision region
for c,

voronoi diagram: points in each
cell are closer to the mean in that cell
than to any other mean

If InP(c;)#InP(c;), then

1
257 \x—,u,.\z+lnP(c,.)

gi(x)= -

decision region
for ¢,

a Hs

decision regio
Hz for ¢
decision region

for c,



Case ) = &°l

1
gi(x) = _20_2 (X_ﬂi)t(x_ﬂi)+|n P(c;) =
_ 1 t t t t
——20_2 (&(‘ﬂi X=X p+pu1;)+InP(c;)
constant
for all classes
1 t ; Iy

gi(x)=_20_2 (—2u; x+ ujp; )+ InP(c;) + X+ (— 2'0_2' +InP(c;)

g;(x) =X + W,

discriminant function is linear

27



Case ) = &°l

t constant in x
g,(x) =w; xX+w,,

linear in x:

d
wix = Z W, X,
i=1

= Thus discriminant function is linear,
= Therefore the decision boundaries
gi{X)=g;(x) are linear
= lines if x has dimension 2
= planes if x has dimension 3
= hyper-planes if x has dimension larger than 3



Case J; = o°l: Example

= 3 classes, each 2-dimensional Gaussian with

ol weld] weli

= Priors P(c,)=P(cz)=% and

= Discriminant functionis g;(x)=

21=22=23=[g g}

P(C3)=%

Lx+|-—""“L+InP(c,
2 [202 (,)]

= Plug in parameters for each class

g,(x)—[’fx+(——138) gz(x)—[461x+(——138)

24

95(X)=

X+ (—— —-0.69)

29



Case J; = o°l: Example

= Need to find out when g;(x) < g{x) for /,j=1,2,3

= Can be done by solving g{x) = g{x) for i,j=1,2,3
= Let's take g,(x) = g,(X) first

[132 x+(———1 38)=—— [4 6 x+(———1 38)

= Simplifying, [-3 —4][x,}__4_7
3 X, 6

line equation
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Case J; = o°l: Example

= Next solve g,(x) = g4(X)

2X,+ % X, =6.02

= Almost finally solve g,(x) = g5(x)

x,—§x2 =-1.81

= And finally solve g,(x) = g,(X) = g5(X)
x,=14 and x,=4.82
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Case J; = o°l: Example

. 1
= Priors P(c,)=Plc,)= 2
o
10 |rg
\

., C3 \,

—~\N(©

; C, |

NS o

)'"j\

0r @ %@7

W2 C, _
&

and P(C3)= E

1

lines connecting
means
are perpendicular to
decision boundaries
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Case ;=2

= Covariance matrices are equal but arbitrary

= In this case, features x,, X, ,..., X, are not
necessarily independent

05 0 05
X1

_[1 05
5—[0.5 1}
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Case ;=2

= Discriminant function

gi(x)=_%(X_lui)tz_1(x_:ui)_l i‘+|nP(ci)
constant
for all classes
= Discriminant function becomes

1 _
gi(x)=_5(x_.ui)tz "(x—p;)+InP(c;)
squared Mahalanobis Distance
= Mahalanobis Distance |x-y[;. =(x-y)'> 7"(x-y)

= |f =1 Mahalanobis Distance becomes usual
Eucledian distance

|x-yl} =(x-y)(x-y)



Eucledian vs. Mahalanobis Distances

x4 =(x - p)'(x- )

points x at equal
Eucledian
distance from u
lie on a circle

=l = (X = )Y 7 (x - )
eigenvectors of X

points x at equal
Mahalanobis distance from
L lie on an ellipse:
2’ stretches cirles to ellipses



Case 2; = 2 Geometric Interpretation

If InP(c;)=InP(c;), then
gi(x) = _Hx_ﬂi‘

2—1

decision region
for c.

for cg
Hi M3
decision region *
for ¢,

points in each cell are closer to the
mean in that cell than to any other
mean under Mahalanobis distance

decision region

Idecision region

If InP(c;)#InP(c;), then
- +InP(c;)

gi(x) = _%HX_:UI‘

decision region

decision region
for cg

M3

for ¢,



Case 2; =%

= Can simplify discriminant function:

9,(x) =~ (K= ) B = ) + InP(c,) =

= —%(X’Z_1X—ﬂ:2_1X— Xt2_1ﬂi +ﬂ;2_1ﬂi)+ InP(c;) =

- _%(x><x— 20y 'x+ u'x 1 )+ InP(c;) =

constant for all classes

= —1(— 2ﬂf2"1x+ ,tth"1ﬂ,.)+ InP(c;)

B (e - B

= Thus In this case discriminant is also linear




Case 2, = 2: Example

= 3 classes, each 2-dimensional Gaussian with
1 —1 ) 17 1.
ﬂ1=[2} ﬂ2=[5} ﬂ3=[4} 21=22=23=[_1_5 45}

P(C1)=P(02)= P(C3)=

U U
4 2

= Again can be done by solving gi(x) = g;(x) for i,j=1,2,3



Case 2, = 2: Example

= |et's solve in general first

g,(x)=g;(x)
WZ X+ (InP(cj)—l,u;Z",ujj =X x4+ (InP(c,.)—l,u,fZ",u,.j
\- Let’s regrou terms X
1

(= -tz )x = —(lnP(cj)—Euj-E"ﬂ,-] + (lnP( C,-)—Eﬂff_1ﬂij

= We get the line where g,(x)=g,(x)

_ P(c; _ 1 _
(! = it )2 ’x=(ln ch ; zﬂj W, —E,UfE ’ﬂi]

row vector
scalar



Case 2, = ): Example

_ P(c,) 1
f—u )E'x=|In X —— X

= Now substitute for I,j=1 2

-2 o0]x=0
x,=0

= Now substitute for i,j=2,3

[-3.14 —1.4]x=-2.41
3.14x, + 1.4x, = 2.41

= Now substitute for 1,j=1,3
|-5.14 —1.43|x=-2.41
5.14x,+1.43x, = 2.41



Case J; =X : Example

= Priors P(c,)=Plc,)= and P(c,)=

U
2

1
4

lines connecting
means
are not in general
perpendicular to
decision boundaries
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General Case 2; are arbitrary

= Covariance matrices for each class are arbitrary

= In this case, features x,, X, ,..., X, are not
necessarily independent

42



General Case 2; are arbitrary

= From previous discussion,

g:(x) = _%(X_ﬂi)t2;1(x_ M) — %In‘z’i‘ +InP(c;)

= This can’t be simplified, but we can rearrange it:

g;(x) = —%(X’Z,T‘X —2uiE7 X + T ) - %IH\Z,-\ +InP(c;)
g.(x) = x’(—%zy‘)x+,u,.’2,f‘x+ (—%,u,?z,?‘y,. —%In|2,.| +In P(c,.))

g,(x)=x'Wx+w'x+w,

43



General Case 2; are arbitrary

constant in x
g;(x) ="x'W. i

quadratlc in x smce

x'Wx = ZZW’IX'XI_ZWII iX;

j=1 i=1 i,j=1

= Thus the discriminant function is quadratic

= Therefore the decision boundaries are quadratic
(ellipses and parabolloids)

44



General Case 2; are arbitrary: Example

= 3 classes, each 2-dimensional Gaussian with
—1 _
ﬂ1=[3} ﬂz=[g} ﬂ3=[42}
1 -0.5 [ 2 -2 1 1.5
51—[—0.5 2 } Ez—[—z 7} 53—[1.5 3}

= Priors: P(c,)=P(02)=% and P(c3)=%
= Again can be done by solving gi(x) = g;(x) for i,j=1,2,3
L oty (1 e, 1
g:(x)= X( 2Ei )X'l_:uiz’i X"‘( 2:uiz’i Hi zln‘z’i‘-l_lnp(ci))

= Need to solve a bunch of quadratic inequalities of 2
variables



General Case 2; are arbitrary: Example

m{ﬂ ﬂz{g} ”F[ﬂ z,:[_&‘%ﬂ Ez:[-22_72} 2"{1-15 135}




Important Points

= The Bayes classifier when classes are normally
distributed is in general quadratic
= |f covariance matrices are equal and proportional to
identity matrix, the Bayes classifier is linear

= |f, in addition the priors on classes are equal, the Bayes
classifier is the minimum Eucledian distance classifier

= |f covariance matrices are equal, the Bayes
classifier is linear

= |f, in addition the priors on classes are equal, the Bayes
classifier is the minimum Mahalanobis distance classifier

= Popular classifiers (Euclidean and Mahalanobis
distance) are optimal only if distribution of data
IS appropriate (normal)



