CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 5



Today

= |ntroduction to parameter estimation

= Two methods for parameter estimation
= Maximum Likelihood Estimation
= Bayesian Estimation



Introducton

= Bayesian Decision Theory in previous lectures
tells us how to design an optimal classifier if we
Knew:
= P(c) (priors)
= P(x | ¢) (class-conditional densities)

= Unfortunately, we rarely have this complete
information!

= Suppose we know the shape of distribution, but
not the parameters
= Two types of parameter estimation

= Maximum Likelihood Estimation
= Bayesian Estimation



ML and Bayesian Parameter Estimation

=  Shape of probability distribution is known |a/otis

: known
= Happens sometimes ‘easier”
= Labeled training data === o= S
= Need to estimate parameters of probability

distribution from the training data

Example

respected fish expert Sﬁds salmon’s
length has distribution

istributi »07) andsea - |
bass’s length has distribution M%)

= Need to estimate parameters u,,62,,,62

\ 4
= Then design classifiers according to the little is
bayesian decision theory known

‘harder”




Independence Across Classes

= We have training data for each class

salmon sea bass salmon salmon sea bass sea bass
gl IR Ty SPRe "
Nt B T3 =3

= When estimating parameters for one class, will
only use the data collected for that class

= reasonable assumption that data from class c; gives
no information about distribution of class ¢;

estimate parameters for estimate parameters for
distribution of salmon from dlstrlbutlon of bass from




Independence Across Classes

= For each class ¢; we have a proposed density
pi(x/ c¢;) with unknown parameters ¢/ which we
need to estimate

= Since we assumed independence of data
across the classes, estimation is an identical
procedure for all classes

= To simplify notation, we drop sub-indexes and
say that we need to estimate parameters @ for
density p(x)

= the fact that we need to do so for each class on the
training data that came from that class is implied



ML vs. Bayesian Parameter Estimation

= Maximum Likelihood

= Parameters @ are unknown but fixed (i.e. not
random variables)

= Bayesian Estimation

= Parameters @ are random variables having some
Known a priori distribution (prior)
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= After parameters are estimated with either ML
or Bayesian Estimation we use methods from
Bayesian decision theory for classification



Maximum Likelihood Parameter Estimation

We have density p(x) which is completely
specified by parameters 9=[4,,..., 6]
= If p(x) is N(u, o2) then 6=[u, o7

To highlight that p(x) depends on parameters

o we will write p(x/6)

= Note overloaded notation, p(x/6) is not a
conditional density

Let D={x,, X,,..., X, } be the nindependent
training samples in our data

= If p(x) is N(u, o?) then x,, X,,..., X, are iid
samples from N(u, o?2)



Maximum Likelihood Parameter Estimation

= Consider the following function, which is
called likelihood of @ with respect to the set
of samples D

p(D[6)=]] p(x.16)=F(6)

= Note Iif D is fixed p(DJ/6) is not a density

= Maximum likelihood estimate (abbreviated
MLE) of @is the value of 8that maximizes
the likelinood function p(D/6)

6 = argmax(p(D |0))

6




Maximum Likelihood Estimation (MLE)

p(D[6)=]]p(x.16)

It D is allowed to vary and @is fixed, by independence
p(D/6) is the joint density for D={x,, X,,..., X,,}

If @ is allowed to vary and D is fixed, p(D/6) is not
density, it is likelihood F(6)!

Recall our approximation of integral trick

PriDe BIx, ... x,1/6]~ e[| p(x, 6)

Thus ML chooses @that is most likely to have given
the observed data D



ML Parameter Estimation vs. ML Classifier

fixed

= Recall ML classifier data
decide class c¢; which maximizes p(*(/c,-)

= Compare with ML parameter estimation

fixed
data

v

choose @ that maximizes p(D/6)

= ML classifier and ML parameter estimation use
the same principles applied to different
problems



Maximum Likelihood Estimation (MLE)

= |nstead of maximizing p(D/6), it is usually easier to
minimize In(p(D/6))

= Since log is monotonic p(D/6)
0 = argma D/[6))= /
gmax(p(D6) M/@
=argmax(Inp(D[6))
o

= To simplify notation, In(p(D/6)=K6)

A k=n n
0 = argmax 1(9) = arg max(InH p(x, |6 )j = arg max(z Inp(x, | 49))
0 k=1 o k=1

[
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FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, bul unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(D|#) as a function of the mean, If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked #; it also maximizes the logarithm of
the likelihood—that is, the log-likelihood fi#), shown at the bottom. Note that even
though they look similar, the likelihood p(D)#) is shown as a function of # whereas the
conditional density p(x|#) is shown as a function of x. Furthermore, as a function of &,
the likelihood p(T4) is not a probability density function and its area has no signifi-
cance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.



MLE: Maximization Methods

= Maximizing I(6) can be solved using standard
methods from Calculus

" Let 6= (6;, 6,, ..., 6,)' and let V,be the gradient

operator
t
ng 0 ’ 0 5"-5i
36, 36, 36,

= Set of necessary conditions for an optimum is:

= Also have to check that #that satisfies the above
condition is maximum, not minimum or saddle point.
Also check the boundary of range of @




MLE Example: Gaussian with unknown u

= Fortunately for us, all the ML estimates of any
densities we would care about have been computed

= Let's go through an example anyway

= Let p(x/ 1) be N(u,02) that is o2 is known, but uis
unknown and needs to be estimated, so 6= u

i =argmax I(u)= arg max(z Inp(x, | ,u)j =
k=1

)7 M

= arg Lnax(kzn; In( \/21% exp(— (X"2 ;ﬁ‘ f JD =

2
= arg maxZ(— In\ 270 - (X"z;f) j

)7 k=1



MLE Example: Gaussian with unknown u

arg max(I(u)) = arg maxzn:[_ In 270 — (X, - ﬁt)z J

7 7 k 20

S
~d
S

L )=3 L0 -p)=0 = > X —mu=0 =

= Thus the ML estimate of the mean is just the
average value of the training data, very intuitive!

= average of the training data would be our guess for
the mean even if we didn't know about ML estimates



MLE for Gaussian with unknown u, ¢~

= Similarly it can be shown that if p(x/ u,07) is
N(u, o), that is x both mean and variance are
unknown, then again very intuitive result
. 1 e 1 -
p=—>x, 6*=—>(x,-af
n = n =
= Similarly it can be shown that if p(x/ 1,2) is

N(u, 2), that is x is a multivariate gaussian with
both mean and covariance matrix unknown, then

p=2Y % £ 1S (- )k, - i)
n< n &~ k k



Today

= Finish Maximum Likelihood Estimation
= Bayesian Parameter estimation
= New Topic

= Non Parametric Density Estimation



How to Measure Performance of MLE?

= How good is a ML estimate g ?
= or actually any other estimate of a parameter?
= The natural measure of error would be |¢9-§

= But |9-4| is random, we cannot compute it
before we carry out experiments

=  We want to say something meaningful about our
estimate as a function of @

= A way to solve this difficulty is to average the
error, i.e. compute the mean absolute error

E “9 - é]= j ‘9 —0\p(x,, X, ey X, )X, dX,...dX_




How to Measure Performance of MLE?s

= |t is usually much easier to compute an almost
equivalent measure of performance, the mean
squared error. EK 66 J

= Do a little algebra, and use Var(X)=E(X?)-(E(X))?2
Elo-6f|=varé) + (E(6)-06f

Y
variance bias

estimator should expectation should
have low variance be close to the true 6




How to Measure Performance of MLE?s

Ello-6F |= var(6) + (E(6)-of

Y

. Y
ideal case bad case bad case
plé)f 1pl6) tp(6)
n i
. X E (9) X X
~ > ® ® > - ® >
E(6)=6 s E(6)=o
no bias large bias no bias
low variance low variance high variance




Bias and Variance for MLE of the Mean

= | et's compute the bias for ML estimate of the mean

Elil-£ 13 x| ~13 ] =1 3w - u

n = n .= n =

= Thus this estimate is unbiased!

= How about variance of ML estimate of the mean? ,

El(a- u)|= Ela? - 2pa+ 1| = w? - 20 E(a (( Zxkn

0_2

n

= Thus variance is very small for a large number of
samples (the more samples, the smaller is variance)

= Thus the MLE of the mean is a very good estimator



Bias and Variance for MLE of the Mean

= Suppose someone claims they have a new great
estimator for the mean, just take the first sample!

N

H= X,

Thus this estimator is unbiased: E(d)= E(x,)= u

= However its variance is: ‘p( A)

El(a- w7 )= El(x, - )= o?
O~
= Thus variance can be very large .

ME,

and does not improve as we E(6)=o

iIncrease the number of samples
no bias

high variance




MLE Bias for Mean and Variance

= How about ML estimate for the variance?
;2 e aF | =1,
El6?]= E[n;(x" ,u)} - o? # o?
= Thus this estimate is biased!
= This is because we used £ instead of true u
= Bias 20 as n— infinity, asymptot/cal/y unbiased

= Unbiased estimate ¢* —Z X, — A1)

= Variance of MLE of variance can be shown
to go to 0 as n goes to Iinfinity



MLE for Uniform distribution UJ[0,d]

= Xis U[0,8]If its density is 1/8inside [0, and O
otherwise (uniform distribution on [0,4] )

s p(x/6) AF(0)
v
).(1 ).(3 ).(2 u —.—)‘(1—).(3—.
k=n 1 if 9> max{x,,.... X, }
= The likelihood is FO)=[]p(x,168)=197 " °= T
k=1 0 if 6<max{x,,..,Xx,}

N

k=n
= Thus 6 = arg max (H p(x, | 9)) = max{ X,,..., X, }
o k=1

= This Is not very pleasing since for sure @ should be
larger than any observed x!



Bayesian Parameter Estimation

= Suppose we have some idea of the range
where parameters ¢ should be
= Shouldn’t we formalize such prior knowledge in

hopes that it will lead to better parameter
estimation?

= Let 6be a random variable with prior
distribution P(6)
= This is the key difference between ML and
Bayesian parameter estimation

= This key assumption allows us to fully exploit the
information provided by the data



Bayesian Parameter Estimation

As in MLE, suppose p(x|6) is completely specified if
@ 1s given

But now @is a random variable with prior p(6)

= Unlike MLE case, p(x|6) is a conditional density

After we observe the data D, using Bayes rule we
can compute the posterior p(6/D)

Recall that for the MAP classifier we find the class c;
that maximizes the posterior p(c/D)

By analogy, a reasonable estimate of @is the one
that maximizes the posterior p(é [|D)

But @is not our final goal, our final goal is the
unknown p(x)

Therefore a better thing to do is to maximize p(x/D),
this is as close as we can come to the unknown p(x) !



Bayesian Estimation: Formula for p(x|D)

= From the definition of joint distribution:
p(x D)= p(x,6|D)de

= Using the definition of conditional probability:
p(x D)= [ p(x|6,D)p(¢ | D)de

= But p(.x/H,D)=p(x/6’) since p(x/6) is completely
specified by & known unknown

p(x| D)= [ p(x[@)p(6| D)do

= Using Bayes formula,

p(e| D)= PL16)PE) p(D|e)=£11p(xk 16)

[oloiopons -




Bayesian Estimation vs. MLE

= So in principle p(x/D) can be computed
= |n practice, it may be hard to do integration analytically,
may have to resort to numerical methods

n

[] p(x, /6)p(6)
p(x D)= [ p(x [6)—3 d¢
[T1 p(x, 16)p(6)d8

k=1

Contrast this with the MLE solution which requires
differentiation of likelihood to get p(x/H

= Differentiation is easy and can always be done analytically



Bayesian Estimation vs. MLE

p(x/D) can be thought of as the weighted average of
the proposed model all possible values of &

support 6 receives
from the data

p(x D)= [ p(x16)p(6 | D)d6

Y
proposed model
with certain 6

Contrast this with the MLE solution which always
gives us a single model:

plx /6)

= When we have many possible solutions, taking their
sum averaged by their probabilities seems better
than spitting out one solution




Bayesian Estimation: Example for U[0,0]

= Let X be U[0,d]. Recall p(x/6)=1/8inside [0,4], else O

A p(x /6) A p(6)

1
¢ ¢

P) 10
4 X 10 6
@

> ® >

= Suppose we assume a U[0,10] prior on &

= good prior to use if we just now the range of @but don’t
kKnow anything else

= We need to compute p(x | D)= jp(x 10)p(6 | D)6

. _ p(D|6)p(6) T
with p(e|D)-jp(D|9)p(0)d9 and p(Dle)—gp(xkle)




Bayesian Estimation: Example for U[0,0]

= We need to compute p(x | D)= jp(x 10)p(6 | D)6

B ___pD/8)p(8) RL
using p(¢ /D)= 7p(D 16)p(6)do and  p(D16)=]] p(x,16)
= When computing MLE of 6, we had
1
p(D|6)=1g" for 6 > max{ x,,..., X, } R p(D/H)
0 otherwise 14 p(6) \

10 f
* Thus X, X3 X)\10 ¢

1

c— for max{ x,,..., x, } <60 <10

p(6 1D)=1 g S
0 otherwise

= where cis the normalizing constant, i.e. ¢ =




Bayesian Estimation: Example for U[0, 6]

= We need to compute p(x | D)= jp(x|9) (6| D)d6

1

p(6 | D)= for max{ x,..., X, }< 6 <10
0 otherw:se

A l

1 t p(x/6) p(6 /D)

(o) X X; Xj X2S10 ¢
@ >
= \We have 2 cases:

1. case x < max{x,, X,,..., X, }

s

constant
10 1 independent of x
p(x /D) - J-max{ x,,...x,,}c Q"1 &
2. case x> max{x,, xz, , X, }
C 1w _| € C
—no"'"* |nx"| n10"




Bayesian Estimation: Example for U[0,0]

tML p(x /_é)
as \ Bayes p(x /D)

X, X; X 10
oo

X

= Note that even after x >max {x,, X,,..., X,}, Bayes
density is not zero, which makes sense

= curious fact: Bayes density is not uniform, i.e. does
not have the functional form that we have assumed!



ML vs. Bayesian Estimation with Broad Prior

= Suppose p(6 is flat and broad (close to uniform prior)
= p(8/D) tends to sharpen if there is a lot of data

A p(6 | D) p(6 /D) ()

A
ﬂ"f&) "
e e e N ALY

0 6 g ¢

A

p(e /D) [\

p(x /6)

Lo\

N

7

= Thus p(D/6) «p(6/D)/p(6) will have the same sharp

peak as p(6/D)

= But by definition, peak of p(D|6) is the ML estimate é’\
= The integral is dominated by the peak:

p(x /D)= [ p(x |6)p(6 | D)d6 = p(x |6)] p(6 | D)6 =p(x /6)

= Thus as n goes to infinity, Bayesian estimate will
approach the density corresponding to the MLE!



ML vs. Bayesian Estimation: General Prior

= Maximum Likelihood Estimation
= Easy to compute, use differential calculus
o Eas;;\to interpret (returns one model)
= p(x/6) has the assumed parametric form

= Bayesian Estimation
= Hard compute, need multidimensional integration

= Hard to interpret, returns weighted average of
models

= p(x/D) does not necessarily have the assumed
parametric form

= Can give better results since use more
information about the problem (prior information)



