CS434a/541a: Pattern Recognition Prof. Olga Veksler

Lecture 5

Today

- Introduction to parameter estimation
- Two methods for parameter estimation
 - Maximum Likelihood Estimation
 - Bayesian Estimation

Introducton

- Bayesian Decision Theory in previous lectures tells us how to design an optimal classifier if we knew:
 - **P**(*c*_i) (priors)
 - $P(x \mid c_i)$ (class-conditional densities)
- Unfortunately, we rarely have this complete information!
- Suppose we know the shape of distribution, but not the parameters
 - Two types of parameter estimation
 - Maximum Likelihood Estimation
 - Bayesian Estimation

ML and Bayesian Parameter Estimation

- Shape of probability distribution is known
 - Happens sometimes

a lot is known "easier"

- Labeled training data salmon bass
- Need to estimate parameters of probability distribution from the training data

Example

respected fish expert says salmon's length has distribution $M(\mu_1, \sigma_1^2)$ and sea bass's length has distribution $N(\mu_2, \sigma_2^2)$

- Need to estimate parameters $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$
- Then design classifiers according to the bayesian decision theory

little is known "harder"

Independence Across Classes

We have training data for each class

- When estimating parameters for one class, will only use the data collected for that class
 - reasonable assumption that data from class c_i gives no information about distribution of class c_i

estimate parameters for distribution of salmon from

estimate parameters for distribution of bass from

Independence Across Classes

- For each class c_i we have a proposed density $p_i(x|c_i)$ with unknown parameters θ^i which we need to estimate
- Since we assumed independence of data across the classes, estimation is an identical procedure for all classes
- To simplify notation, we drop sub-indexes and say that we need to estimate parameters θ for density p(x)
 - the fact that we need to do so for each class on the training data that came from that class is implied

ML vs. Bayesian Parameter Estimation

Maximum Likelihood

 Parameters θ are unknown but fixed (i.e. not random variables)

Bayesian Estimation

• Parameters θ are random variables having some known a priori distribution (prior)

 After parameters are estimated with either ML or Bayesian Estimation we use methods from Bayesian decision theory for classification

Maximum Likelihood Parameter Estimation

- We have density p(x) which is completely specified by parameters $\theta = [\theta_1, ..., \theta_k]$
 - If p(x) is $N(\mu, \sigma^2)$ then $\theta = [\mu, \sigma^2]$
- To highlight that p(x) depends on parameters θ we will write $p(x|\theta)$
 - Note overloaded notation, $p(x|\theta)$ is **not** a conditional density
- Let $D=\{x_1, x_2, ..., x_n\}$ be the n independent training samples in our data
 - If p(x) is $N(\mu, \sigma^2)$ then $x_1, x_2, ..., x_n$ are iid samples from $N(\mu, \sigma^2)$

Maximum Likelihood Parameter Estimation

 Consider the following function, which is called likelihood of θ with respect to the set of samples D

$$p(D|\theta) = \prod_{k=1}^{k=n} p(x_k|\theta) = F(\theta)$$

- Note if **D** is fixed $p(D/\theta)$ is **not** a density
- Maximum likelihood estimate (abbreviated MLE) of θ is the value of θ that maximizes the likelihood function $p(D|\theta)$

$$\hat{ heta} = \underset{ heta}{arg max}(p(D \mid \theta))$$

Maximum Likelihood Estimation (MLE)

$$p(D|\theta) = \prod_{k=1}^{k=n} p(x_k|\theta)$$

- If D is allowed to vary and θ is fixed, by independence $p(D|\theta)$ is the joint density for $D=\{x_1, x_2, ..., x_n\}$
- If θ is allowed to vary and D is fixed, $p(D|\theta)$ is not density, it is likelihood $F(\theta)$!
- Recall our approximation of integral trick

$$Pr[D \in B[x_1,...,x_n]/\theta] \approx \varepsilon \prod_{k=1}^{K=1} p(x_k/\theta)$$

 Thus ML chooses θ that is most likely to have given the observed data D

ML Parameter Estimation vs. ML Classifier

- Recall ML classifier $\frac{\text{fixed}}{\text{data}}$ decide class \mathbf{c}_i which maximizes $\mathbf{p}(\mathbf{x}/\mathbf{c}_i)$
- Compare with ML parameter estimation fixed data
 choose θ that maximizes p(D/θ)
- ML classifier and ML parameter estimation use the same principles applied to different problems

Maximum Likelihood Estimation (MLE)

- Instead of maximizing $p(D|\theta)$, it is usually easier to minimize $In(p(D|\theta))$
- Since log is monotonic

$$\hat{\theta} = \underset{\theta}{arg max}(p(D|\theta)) =$$

$$= \underset{\theta}{arg max}(ln p(D|\theta))$$

• To simplify notation, $In(p(D/\theta))=I(\theta)$

$$\hat{\theta} = \arg\max_{\theta} I(\theta) = \arg\max_{\theta} \left(\ln\prod_{k=1}^{k=n} p(x_k \mid \theta) \right) = \arg\max_{\theta} \left(\sum_{k=1}^{n} \ln p(x_k \mid \theta) \right)$$

FIGURE 3.1. The top graph shows several training points in one dimension, known or assumed to be drawn from a Gaussian of a particular variance, but unknown mean. Four of the infinite number of candidate source distributions are shown in dashed lines. The middle figure shows the likelihood $p(\mathcal{D}|\theta)$ as a function of the mean. If we had a very large number of training points, this likelihood would be very narrow. The value that maximizes the likelihood is marked $\hat{\theta}$; it also maximizes the logarithm of the likelihood—that is, the log-likelihood $l(\theta)$, shown at the bottom. Note that even though they look similar, the likelihood $p(\mathcal{D}|\theta)$ is shown as a function of θ whereas the conditional density $p(x|\theta)$ is shown as a function of x. Furthermore, as a function of θ , the likelihood $p(\mathcal{D}|\theta)$ is not a probability density function and its area has no significance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

MLE: Maximization Methods

- Maximizing I(θ) can be solved using standard methods from Calculus
- Let $\theta = (\theta_1, \theta_2, ..., \theta_p)^t$ and let ∇_{θ} be the gradient operator

$$\nabla_{\theta} = \left[\frac{\partial}{\partial \theta_{1}}, \frac{\partial}{\partial \theta_{2}}, \dots, \frac{\partial}{\partial \theta_{p}} \right]^{t}$$

Set of necessary conditions for an optimum is:

$$\nabla_{\theta} I = 0$$

 Also have to check that θ that satisfies the above condition is maximum, not minimum or saddle point.
 Also check the boundary of range of θ

MLE Example: Gaussian with unknown μ

- Fortunately for us, all the ML estimates of any densities we would care about have been computed
- Let's go through an example anyway
- Let $p(x|\mu)$ be $N(\mu,\sigma^2)$ that is σ^2 is known, but μ is unknown and needs to be estimated, so $\theta = \mu$

$$\hat{\mu} = \arg\max_{\mu} I(\mu) = \arg\max_{\mu} \left(\sum_{k=1}^{n} \ln p(x_{k} \mid \mu) \right) =$$

$$= \arg\max_{\mu} \left(\sum_{k=1}^{n} \ln \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x_{k} - \mu)^{2}}{2\sigma^{2}} \right) \right) \right) =$$

$$= \arg\max_{\mu} \sum_{k=1}^{n} \left(-\ln\sqrt{2\pi\sigma} - \frac{(x_{k} - \mu)^{2}}{2\sigma^{2}} \right)$$

MLE Example: Gaussian with unknown μ

$$\arg\max_{\mu}(I(\mu)) = \arg\max_{\mu}\sum_{k=1}^{n} \left(-\ln\sqrt{2\pi\sigma} - \frac{(x_k - \mu)^2}{2\sigma^2}\right)$$

$$\frac{d}{d\mu}(I(\mu)) = \sum_{k=1}^{n} \frac{1}{\sigma^{2}} (x_{k} - \mu) = 0 \implies \sum_{k=1}^{n} x_{k} - n\mu = 0 \implies \hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_{k}$$

- Thus the ML estimate of the mean is just the average value of the training data, very intuitive!
 - average of the training data would be our guess for the mean even if we didn't know about ML estimates

MLE for Gaussian with unknown μ , σ^2

• Similarly it can be shown that if $p(x|\mu,\sigma^2)$ is $N(\mu,\sigma^2)$, that is x both mean and variance are unknown, then again very intuitive result

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})^2$$

• Similarly it can be shown that if $p(x|\mu,\Sigma)$ is $N(\mu, \Sigma)$, that is x is a multivariate gaussian with both mean and covariance matrix unknown, then

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} X_{k} \qquad \qquad \hat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (X_{k} - \hat{\mu})(X_{k} - \hat{\mu})^{t}$$

Today

- Finish Maximum Likelihood Estimation
- Bayesian Parameter estimation
- New Topic
 - Non Parametric Density Estimation

How to Measure Performance of MLE?

- How good is a ML estimate $\hat{\theta}$?
 - or actually any other estimate of a parameter?
- The natural measure of error would be $|\theta \hat{\theta}|$
- But $|\theta \hat{\theta}|$ is random, we cannot compute it before we carry out experiments
 - We want to say something meaningful about our estimate as a function of θ
- A way to solve this difficulty is to average the error, i.e. compute the mean absolute error

$$E[\theta - \hat{\theta}] = \int |\theta - \hat{\theta}| p(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n$$

How to Measure Performance of MLE?s

• It is usually much easier to compute an almost equivalent measure of performance, the *mean* $squared\ error$: $E\left[(\theta - \hat{\theta})^2\right]$

• Do a little algebra, and use $Var(X) = E(X^2) - (E(X))^2$

$$E[(\theta - \hat{\theta})^2] = Var(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$
variance
bias
estimator should expectation should have low variance be close to the true θ

How to Measure Performance of MLE?s

$$E[(\theta - \hat{\theta})^{2}] = Var(\hat{\theta}) + (E(\hat{\theta}) - \theta)^{2}$$
variance
bias

ideal case

no bias low variance

bad case

large bias low variance

bad case

no bias high variance

Bias and Variance for MLE of the Mean

Let's compute the bias for ML estimate of the mean

$$E[\hat{\mu}] = E\left[\frac{1}{n}\sum_{k=1}^{n} x_{k}\right] = \frac{1}{n}\sum_{k=1}^{n} E[x_{k}] = \frac{1}{n}\sum_{k=1}^{n} \mu = \mu$$

- Thus this estimate is unbiased!

How about variance of ML estimate of the mean?
$$E[(\hat{\mu}-\mu)^2] = E[\hat{\mu}^2 - 2\mu\hat{\mu} + \mu^2] = \mu^2 - 2\mu E(\hat{\mu}) + E\left(\frac{1}{n}\sum_{k=1}^n x_k\right)^2$$

$$= \frac{\sigma^2}{n}$$

- Thus variance is very small for a large number of samples (the more samples, the smaller is variance)
- Thus the MLE of the mean is a very good estimator

Bias and Variance for MLE of the Mean

 Suppose someone claims they have a new great estimator for the mean, just take the first sample!

$$\hat{\mu} = \mathbf{X}_1$$

- Thus this estimator is unbiased: $\boldsymbol{E}(\hat{\mu}) = \boldsymbol{E}(\boldsymbol{x}_1) = \mu$
- However its variance is:

$$E[(\hat{\mu} - \mu)^2] = E[(x_1 - \mu)^2] = \sigma^2$$

 Thus variance can be very large and does not improve as we increase the number of samples

MLE Bias for Mean and Variance

How about ML estimate for the variance?

$$E[\hat{\sigma}^2] = E\left[\frac{1}{n}\sum_{k=1}^n (x_k - \hat{\mu})^2\right] = \frac{n-1}{n}\sigma^2 \neq \sigma^2$$

- Thus this estimate is biased!
 - This is because we used $\hat{\mu}$ instead of true μ
- Bias →0 as n→ infinity, asymptotically unbiased
- Unbiased estimate $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{k=1}^{n} (x_k \hat{\mu})^2$
- Variance of MLE of variance can be shown to go to 0 as n goes to infinity

MLE for Uniform distribution $U[0,\theta]$

• X is U[0, θ] if its density is $1/\theta$ inside [$\mathbf{0}$, θ] and 0 otherwise (uniform distribution on [$\mathbf{0}$, θ])

- The likelihood is $F(\theta) = \prod_{k=1}^{k=n} p(x_k \mid \theta) = \begin{cases} \frac{1}{\theta^n} & \text{if } \theta \ge \max\{x_1, ..., x_n\} \\ 0 & \text{if } \theta < \max\{x_1, ..., x_n\} \end{cases}$
- Thus $\hat{\theta} = \arg \max_{\theta} \left(\prod_{k=1}^{k=n} p(x_k \mid \theta) \right) = \max\{x_1, ..., x_n\}$
- This is not very pleasing since for sure θ should be larger than any observed x!

Bayesian Parameter Estimation

- Suppose we have some idea of the range where parameters θ should be
 - Shouldn't we formalize such prior knowledge in hopes that it will lead to better parameter estimation?
- Let θ be a random variable with prior distribution $P(\theta)$
 - This is the key difference between ML and Bayesian parameter estimation
 - This key assumption allows us to fully exploit the information provided by the data

Bayesian Parameter Estimation

- As in MLE, suppose $p(x|\theta)$ is completely specified if θ is given
- But now θ is a random variable with prior $\boldsymbol{p}(\theta)$
 - Unlike MLE case, $p(x|\theta)$ is a conditional density
- After we observe the data \mathbf{D} , using Bayes rule we can compute the posterior $\mathbf{p}(\theta|\mathbf{D})$
- Recall that for the MAP classifier we find the class c_i that maximizes the posterior p(c|D)
- By analogy, a reasonable estimate of θ is the one that maximizes the posterior $p(\theta | D)$
- But θ is not our final goal, our final goal is the unknown p(x)
- Therefore a better thing to do is to maximize p(x|D), this is as close as we can come to the unknown p(x)!

Bayesian Estimation: Formula for p(x|D)

From the definition of joint distribution:

$$p(x \mid D) = \int p(x, \theta \mid D) d\theta$$

Using the definition of conditional probability:

$$p(x \mid D) = \int p(x \mid \theta, D)p(\theta \mid D)d\theta$$

But $p(x|\theta,D)=p(x|\theta)$ since $p(x|\theta)$ is completely specified by θ **known unknown**

$$p(x \mid D) = \int p(x \mid \theta) p(\theta \mid D) d\theta$$

Using Bayes formula,

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta)p(\theta)d\theta} \qquad p(D \mid \theta) = \prod_{k=1}^{n} p(x_k \mid \theta)$$

Bayesian Estimation vs. MLE

- So in principle p(x/D) can be computed
 - In practice, it may be hard to do integration analytically, may have to resort to numerical methods

$$p(x \mid D) = \int p(x \mid \theta) \frac{\prod_{k=1}^{n} p(x_{k} \mid \theta) p(\theta)}{\int \prod_{k=1}^{n} p(x_{k} \mid \theta) p(\theta) d\theta} d\theta$$

- Contrast this with the MLE solution which requires differentiation of likelihood to get $p(x \mid \hat{\theta})$
 - Differentiation is easy and can always be done analytically

Bayesian Estimation vs. MLE

• p(x/D) can be thought of as the weighted average of the proposed model all possible values of θ

support
$$\theta$$
 receives from the data
$$p(x \mid D) = \int p(x \mid \theta) p(\theta \mid D) d\theta$$

$$proposed \ model$$

$$with \ certain \ \theta$$

Contrast this with the MLE solution which always gives us a single model:

$$p(x/\hat{\theta})$$

 When we have many possible solutions, taking their sum averaged by their probabilities seems better than spitting out one solution

Bayesian Estimation: Example for $U[0,\theta]$

• Let X be $U[0,\theta]$. Recall $p(x/\theta)=1/\theta$ inside $[0,\theta]$, else 0

- Suppose we assume a U[0,10] prior on θ
 - good prior to use if we just now the range of $\boldsymbol{\theta}$ but don't know anything else
- We need to compute $p(x \mid D) = \int p(x \mid \theta)p(\theta \mid D)d\theta$

• with
$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta)p(\theta)d\theta}$$
 and $p(D \mid \theta) = \prod_{k=1}^{n} p(x_k \mid \theta)$

Bayesian Estimation: Example for $U[0,\theta]$

• We need to compute $p(x \mid D) = \int p(x \mid \theta)p(\theta \mid D)d\theta$

• using
$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta)p(\theta)d\theta}$$
 and $p(D \mid \theta) = \prod_{k=1}^{n} p(x_k \mid \theta)$

• When computing MLE of θ , we had

$$p(D \mid \theta) = \begin{cases} \frac{1}{\theta^n} & \text{for } \theta \ge \max\{x_1, ..., x_n\} \\ 0 & \text{otherwise} \end{cases}$$

Thus

$$p(\theta \mid D) = \begin{cases} c \frac{1}{\theta^n} & \text{for max} \{x_1, ..., x_n\} \le \theta \le 10 \\ 0 & \text{otherwise} \end{cases}$$

• where
$$c$$
 is the normalizing constant, i.e. $c = \frac{1}{\int_{max\{x_1,...,x_n\}}^{10} \frac{d\theta}{\theta^n}}$

Bayesian Estimation: Example for U[0,θ]

• We need to compute $p(x \mid D) = \int p(x \mid \theta) p(\theta \mid D) d\theta$ $p(\theta \mid D) = \begin{cases} c \frac{1}{\theta^n} & \text{for max} \{x_1, ..., x_n\} \le \theta \le 10 \\ 0 & \text{otherwise} \end{cases}$

constant

- We have 2 cases:
- 1. case $x < \max\{x_1, x_2, ..., x_n\}$

$$p(x \mid D) = \int_{\max\{x_1, \dots, x_n\}}^{10} c \frac{1}{\theta^{n+1}} d\theta = \alpha$$

2. case $x > \max\{x_1, x_2, ..., x_n\}$ $p(x/D) = \int_{x}^{10} c \frac{1}{\theta^{n+1}} d\theta = \frac{c}{-n\theta^n} \Big|_{x}^{10} = \frac{c}{nx^n} - \frac{c}{n10^n}$

Bayesian Estimation: Example for U[0,θ]

- Note that even after x >max {x₁, x₂,..., x_n}, Bayes density is not zero, which makes sense
- curious fact: Bayes density is not uniform, i.e. does not have the functional form that we have assumed!

ML vs. Bayesian Estimation with Broad Prior

- Suppose $p(\theta)$ is flat and broad (close to uniform prior)
- $p(\theta|D)$ tends to sharpen if there is a lot of data

- Thus $p(D/\theta) \propto p(\theta/D)/p(\theta)$ will have the same sharp peak as $p(\theta/D)$
- But by definition, peak of $p(D|\theta)$ is the ML estimate $\hat{\theta}$
- The integral is dominated by the peak:

$$p(x \mid D) = \int p(x \mid \theta) p(\theta \mid D) d\theta \approx p(x \mid \hat{\theta}) \int p(\theta \mid D) d\theta = p(x \mid \hat{\theta})$$

Thus as n goes to infinity, Bayesian estimate will approach the density corresponding to the MLE!

ML vs. Bayesian Estimation: General Prior

- Maximum Likelihood Estimation
 - Easy to compute, use differential calculus
 - Easy to interpret (returns one model)
 - $p(x/\hat{\theta})$ has the assumed parametric form
- Bayesian Estimation
 - Hard compute, need multidimensional integration
 - Hard to interpret, returns weighted average of models
 - p(x/D) does not necessarily have the assumed parametric form
 - Can give better results since use more information about the problem (prior information)