CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 7



Today

= Problems of high dimensional data, “the
curse of dimensionality”

= running time
= overfitting
= number of samples required

= Dimensionality Reduction Methods
=  Principle Component Analysis (today)
= Fisher Linear Discriminant (next time)



Dimensionality on the Course Road Map

affects all these methods
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Bayesian Decision theory (rare case) a lot is
Know probability distribution of the categories known

Do not even need training data
Can design optimal classifier

ML and Bayesian parameter estimation
Need to estimate Parameters of probability dist.
Need training data

Non-Parametric Methods
No probability distribution, labeled data

Linear discriminant functions and Neural Nets
The shape of discriminant functions is known
Need to estimate parameters of discriminant functions
Unsupervised Learning and Clustering

No probability distribution and unlabeled data little is
Known
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Curse of Dimensionality: Complexity

=  Complexity (running time) increases with
dimension d

= Alot of methods have at least O(nd?) complexity,
where nis the number of samples

= For example if we need to estimate covariance
matrix

= So as dbecomes large, O(nd?) complexity may
be too costly



Curse of Dimensionality: Ovetrfitting

= |f dis large, n, the number of samples, may be
too small for accurate parameter estimation

= For example, covariance matrix has d?
parameters:
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= For accurate estimation, n should be much bigger

than d?
= QOtherwise model is too complicated for the data,

overfitting.



Curse of Dimensionality: Ovetrfitting

Paradox: If n < d? we are better off assuming that

features are uncorrelated, even if we know this

assumption is wrong

In this case, the covariance matrix has only d

parameters: (62..- 0 |
Z= .. .

0.0
We are likely to avoid overfitting because we fit a

model with less parameters: model with more

arameters

model with less

parameters 7




Curse of Dimensionality: Number of Samples

=  Suppose we want to use the nearest neighbor
approach with k=1 (71NN)

= Suppose we start with only one feature
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= This feature is not discriminative, i.e. it does not
separate the classes well

= We decide to use 2 features. For the 1NN method
to work well, need a lot of samples, i.e. samples
have to be dense

= To maintain the same density as in 1D (9 samples
per unit length), how many samples do we need?




Curse of Dimensionality: Number of Samples

=  We need 9 samples to maintain the same
density as in 1D
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Curse of Dimensionality: Number of Samples

= Of course, when we go from 1 feature to 2, no
one gives us more samples, we still have 9

1t -

= This is way too sparse for TNN to work well



Curse of Dimensionality: Number of Samples

= Things go from bad to worse if we decide to use 3

features: 1

= |f 9was dense enough in 1D, in 3D we need
93=729 samples!



Curse of Dimensionality: Number of Samples

In general, if n samples is dense enough in 1D

Then in d dimensions we need n9 samples!

And n9 grows really really fast as a function of d

Common pitfall:

If we can'’t solve a problem with a few features, adding
more features seems like a good idea

However the number of samples usually stays the same

The method with more features is likely to perform
worse instead of expected better



Curse of Dimensionality: Number of Samples

= For a fixed number of samples, as we add
features, the graph of classification error:

classification
error

| 1] >
1 - L\ # features
optimal # features

= Thus for each fixed sample size n, there is the
optimal number of features to use



The Curse of Dimensionality

= We should try to avoid creating lot of features
= Often no choice, problem starts with many features

= Example: Face Detection
= One sample point is k by m array of pixels

4 i

= Feature extraction is not trivial, usually every
pixel is taken as a feature

= Typical dimension is 20 by 20 = 400

=  Suppose 10 samples are dense enough for 1
dimension. Need only 10499 samples



The Curse of Dimensionality

= Face Detection, dimension of one sample point is km
1111
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= The fact that we set up the problem with km
dimensions (features) does not mean it is really
a km-dimensional problem

= Space of all k by mimages has km dimensions

= Space of all k by m faces must be much smaller,
since faces form a tiny fraction of all possible images

= Most likely we are not setting the problem up with
the right features

= |[f we used better features, we are likely need much
less than km-dimensions




Dimensionality Reduction

High dimensionality is challenging and redundant

It is natural to try to reduce dimensionality
Reduce dimensionality by feature combination:

combine old features x to create new features y

a1 ([x5]) 1y,
x=|%2 6| % ={E}=y with k < d
. . y
X \lxa]) YF
For example, [x,]
X, [x,+x2}
X, X;+ X,
X4

Ideally, the new vector y should retain from x all
information important for classification



Dimensionality Reduction

= The best f(x) is most likely a non-linear function

= Linear functions are easier to find though

= For now, assume that f(x) is a linear mapping

= Thus it can be represented by a matrix W.

X, X, W e Wl X,
X X 11 || ¥1 ]
2(=>W| 2= : : 2= : with k< d
w w : Y«
Xd Xd k1 kd _Xd




Feature Combination

= We will look at 2 methods for feature
combination

= Principle Component Analysis (PCA)
= Fischer Linear Discriminant (next lecture)



Principle Component Analysis (PCA)

Main idea: seek most accurate data representation in
a lower dimensional space

Example in 2-D

= Project data to 1-D subspace (a line) which minimize the
projection error
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Cle ® dimension 1 S dimengion 1
large projection errors, small projection errors,
bad line to project to good line to project to

Notice that the the good line to use for projection lies
In the direction of largest variance



PCA

= After the data is projected on the best line, need to
transform the coordinate system to get 1D
representation for vector y

= Note that new data y has the same variance as old
data x in the direction of the green line

= PCA preserves largest variances in the data. We will
prove this statement, for now it is just an intuition of
what PCA will do



PCA: Approximation of Elliptical Cloud in 3D
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PCA

= What is the direction of largest variance in data?

= Recall that if x has multivariate distribution N(x,2%),
direction of largest variance is given by eigenvector
corresponding to the largest eigenvalue of X

5 -1 05 0 05 1 15 2
X1

= This is a hint that we should be looking at the
covariance matrix of the data (note that PCA can be
applied to distributions other than Gaussian)



PCA: Linear Algebra for Derivation

= et Vbe a ddimensional linear space, and Wbe a k
dimensional linear subspace of V

= We can always find a set of d dimensional vectors
{e,,e,,...,et which forms an orthonormal basis for W

" <e,ep =0if iis not equal to jand <e;e> = 1
= Thus any vector in Wc?n be written as
ae +a,e, +..+ e, => ae, for scalars a,,...,q,

i=1

Let V= R?and W be the line
Xx-2y=0. Then the orthonormal
basis for W is

[:54]




PCA: Linear Algebra for Derivation

= Recall that subspace W contains the zero vector, i.e.

It goes through the origin
/-this line is not a
subspace of R?

= For derivation, it will be convenient to project to
subspace W: thus we need to shift everything

- == this line is a
/ subspace of R?
- >




PCA Derivation: Shift by the Mean Vector

= Before PCA, subtract sample mean from the data
x——Zx = X— ]I

= The new data has zero mean: E(X-E(X)) = E(X)-E(X) =
= All we did is change the coordinate system
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= Another way to look at it:
= first step of getting y is to subtract the mean of x

x - y=1f(x)=g(x-2)



PCA: Derivation

We want to find the most accurate representation of
data D={x;,X,,...,X,;} In some subspace W which has
dimension k< d

Let {e,,e,,...,e,} be the orthonormal basis for W. Any

vector in W can be written as Z
i=1
Thus x, will be represkented by some vector in W

Zaﬁei
i=1
Error this representation:

2
k
error =||x, — ) o€,
i=1




PCA: Derivation

= To find the total error, we need to sum over all xj’s

k
= Any x; can be written as ;a,,.e,.
= Thus the total error for representation of all data D is:
sum over all data points

'

n

J(e1,...,ek,a’11 ""ank) = Z

7 i=1

Kk 2

X; =) ;e
~v" i=1

unknowns error at one point




PCA: Derivation

= To minimize J, need to take partial derivatives and
also enforce constraint that {e,,e,,...,e,} are
orthogonal
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PCA: Derivation

k
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=1

j=1 i=1 j=1 i=

S

= First take partial derivatives with respect to «;,,

%)
o,

(©,50ney @4 s Uyysenelyy ) = —2X" €, + 202,

= Thus the optimal value for «,, Is
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PCA: Derivation

k

Je,,...,e,a,..00,) ZHX H —ZZZaI,X e, + Zaf,.

j=1 i=1 j=1 i=1

S

= Plug the optimal value for «,, = x',,e, back into J

Je,,...,e ZHX H —222 x'e; )xe +ZZ(X e )?

j=1 i=1 j=1 i=1

= Can simplify J



PCA: Derivation

Sey-er)= 2| >3 (x

j=1 i=1

= Rewrite J using (a’b) = (a'b)(atb)=(b'a)(a'b)=b'(aa' )b
e,;-- !ek Z‘Xi‘z_ée;[i(xiX;)Jei

k
2
t
i=1

= Sis called the scatter matrix, it is just n-1 times the
sample covariance matrix we have seen before
2 1 ¢ - A
>=——3(x;- a)x, - )

j=1



PCA: Derivation

n o k
— ZHXH _ Ze}’Se,.
ConStant

Minimizing J is equivalent to maximizing Ze’Se
i=1

We should also enforce constraints e;'e;= 1 for all i

Use the method of Lagrange multipliers, incorporate
the constraints with undetermined A, ,..., A,

Need to maximize new function u

k
u(e,,-.. Ze’Se Z/lj(ej.ej 1)
j=1



PCA: Derivation

= If xis a vector and fix)= f(x,,..., Xy) is a function, to
simplify notation, define

ot -
ox

9 f(x)=|

ax of
X,

= |t can be shown that %(x’x)= 2x

= |[f Ais a symmetric matrix, it can be shown that

i(x’ Ax)=2Ax
dx



PCA: Derivation

k
ue,,...,e, )= Ze’Se Z/lj(ej.ej 1)
j=1
= Compute the partial derivatives with respect to e,

%,
e —ule,,...,e,)=2Se, —21 e, =0

Note: e, is a vector, what we are really doing here is
taking partial derivatives with respect to each
element of e,,, and then arranging them up in a
linear equation

= Thus 4, and e, are eigenvalues and eigenvectors of

scatter matrix S
Se_=1_e,



PCA: Derivation

o) =35 - Seise,

= Let's plug e, backinto Jand use Se,_=1_e,

errre) = 2o - 4o =3 -4

constant

= Thus to minimize J take for the basis of Wthe k
eigenvectors of S corresponding to the k largest
eigenvalues



PCA

= The larger the eigenvalue of S, the larger is the
variance in the direction of corresponding eigenvector

A, =30

° ° >

e * "1-08

= This result is exactly what we expected: project x into
subspace of dimension k which has the largest
variance

= This Is very intuitive: restrict attention to directions
where the scatter is the greatest



PCA

= Thus PCA can be thought of as finding new
orthogonal basis by rotating the old axis until the
directions of maximum variance are found




PCA as Data Approximation

Let {e;.e,...,ey} be all deigenvectors of the scatter
matrix S, sorted in order of decreasing corresponding
eigenvalue

Without any approximation, for any sample x;:
error of ajpfroximation

d 4 N\
X, = Z;a,e,:g,e,+...+akekj+ak+,ek+,...+ad e,
l:

Y
approximation of x;

coefficients «,, =x!;e,, are called principle components

= The larger k, the better is the approximation

= Components are arranged in order of importance, more
Important components come first

Thus PCA takes the first k most important
components of x; as an approximation to Xx;




PCA: Last Step

= Now we know how to project the data

= | ast step is to change the coordinates to get final
k-dimensional vector y

= Let matrix E=|e,--e,]
= Then the coordinate transformationis y = E'x

= Under Et, the eigenvectors £t
become the standard basis: "




Recipe for Dimension Reduction with PCA

Data D={x,,X,,...,X,}. Each X;is a d-dimensional
vector. Wish to use PCA to reduce dimension to k

. N IR
1. Find the sample mean /= ;Z X
i=1
Subtract sample mean from the data 2z, = x; — u

Compute the scatter matrix S=) z,z

i=1
Compute eigenvectors e,,e,,...,e, corresponding to
the k largest eigenvalues of S

Let e,,e,....,e, be the columns of matrix E=|e,---e,]

s~ W

o

6. The desired y which is the closest approximation
to Xis y=E'z



PCA Example Using Matlab

= let D={(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)}

= Convenient to arrange data in array

_12_
X=|"":

97

X,

Xg

= Mean u=mean(X)=[4.6 4.4]
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= Subtract mean from data to get new data array Z

I
Z2=X-|":
7

= X — repmat(u,8,1) =

= Compute the scatter matrix S

S=7xcov(Z)=|- 3.6 — 4.4]

w

~3.6 -4.4

44 26

[: Zﬂ +..+[4.4 26][2‘6’} =

matlab uses unbiased estimate for covariance, so S=(n-1)*cov(Z2)

|

57 40
40 34

|



PCA Example Using Matlab

= Use [V,D] =eig(S) to get eigenvalues and
eigenvectors of S

A, =87 and e, = [: gg} °

4 x)‘ ®
A,=3.8and e, = [93 8} ’

= Projection to 1D space in the direction of e,
Y —e'Z! = ([— 0.8 — 0.6][: 3.6 %D —[4.3 .- —5.1]
=y, - sl



Drawbacks of PCA

= PCA was designed for accurate data
representation, not for data classification
= Preserves as much variance in data as possible

= If directions of maximum variance is important for
classification, will work

= However the directions of maximum variance may
be useless for classification
A

g¥ o apply PCA

gl ® ® I >

g o° to each class
>

= Next Lecture: Fisher Linear Discriminant
= preserve direction useful for discrimination



