CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 8



Today

= Continue with Dimensionality Reduction
= |Last lecture: PCA
= This lecture: Fisher Linear Discriminant



Data Representation vs. Data Classification

= PCA finds the most accurate data representation
in a lower dimensional space
= Project data in the directions of maximum variance
= However the directions of maximum variance may
bAe useless for classification

separable
g o ® apply PCA not separable
gl o° | > _CENENEESOINE -
g o° to each class
>

= Fisher Linear Discriminant project to a line which
preserves direction useful for data classification



Fisher Linear Discriminant

= Main idea: find projection to a line s.t. samples
from different classes are well separated

Example in 2D

bad line to project to, good line to project to,
classes are mixed up classes are well separated



Fisher Linear Discriminant

= Suppose we have 2 classes and d-dimensional

samples x4,...,x,, where

= n, samples come from the first class
= n, samples come from the second class

= consider projection on a line
= Let the line direction be given by unit vector v

= Scalar vix;is the distance of
projection of x;from the origin

= Thusit vix;is the projection of
> X;into a one dimensional
subspace




Fisher Linear Discriminant

= Thus the projection of sample x; onto a line in
direction v is given by vix;

= How to measure separation between projections of
different classes?

= Let @, and #&, be the means of projections of
classes 1 and 2
= Let 4, and u,be the means of classes 1 and 2

« |, - @] seems like a good measure



Fisher Linear Discriminant

= How goodis |, —/,| as a measure of separation?
= The larger |1, - &1 |, the better is the expected separation

1y - "‘i‘:.lb.'.

— o oot @EO I >

= the vertical axes is a better line than the horizontal
axes to project to for class separability

= however |, - i,|>|g, -1,



Fisher Linear Discriminant

The problem with |, — &,| is that it does not
consider the variance of the classes

A

1y - ”'it:li.'.

small variance

large variance



Fisher Linear Discriminant

= We need to normalize |, — &, by a factor which is
proportional to variance

. 1
= Have samples z,,...,Zz,. Sample mean is x, = ;Z z,
i=1

= Define their scatter as
s=>(z,-u,)
i=1

= Thus scatter is just sample variance multiplied by n

= scatter measures the same thing as variance, the spread
of data around the mean

= gcatter is just on different scale than variance

o 2® o
larger scatter: ° ® . ® smaller scatter: :{.Q



Fisher Linear Discriminant

= Fisher Solution: normalize |2, — i,| by scatter

= lLety;=Vix;, i.e. y;'s are the projected samples

= Scatter for projected samples of class 1 is

§12= Z(Y,-—ﬂ1)2

y e Class 1

= Scatter for projected samples of class 2 is
§22 = Z (.Vi — i, ) ?

y;eClass 2



Fisher Linear Discriminant

= We need to normalize by both scatter of class 1 and
scatter of class 2

= Thus Fisher linear discriminant is to project on line
in the direction v which maximizes

want projected means are far from each other
A

2
J(v) = (2 - 1,)
~2  x2
/51 + S, -
want scatter in class 1 is as want scatter in class 2 is as

small as possible, i.e. samples small as possible, i.e. samples
of class 1 cluster around the of class 2 cluster around the

projected mean fi, projected mean [i,




Fisher Linear Discriminant

2
J(V) _ (:1312_ ﬂjz)
S; + 8,
If we find v which makes J(v) large, we are
guaranteed that the classes are well separated

projected means are far from each other

' N\
A, A,
—I—IJI—I 0-‘0—»
—— ——/
small §. implies that small S, implies that
projected samples of projected samples of
class 1 are clustered class 2 are clustered

around projected mean around projected mean



Fisher Linear Discriminant Derivation

2
J(V) _ (11312_ ﬂfz)
S;+8,
= All we need to do now is to express J explicitly as a

function of v and maximize it
= straightforward but need linear algebra and Calculus

= Define the separate class scatter matrices S, and
S, for classes 1 and 2. These measure the scatter

of original samples x; (before projection)
S = Z (x; — 1 )(x; — 11y

x;eClass 1

S, = Z (Xi _IUZ)(Xi _,Uz)t

x ;e Class 2



Fisher Linear Discriminant Derivation

=  Now define the within the class scatter matrix
S,=S5,+8S,

* Recallthat §7= > (y,-2,)?

y e Class 1
= Using y;= vix; and &, = v'pu,

§12 = Z (Vtxi - Vt,u1)2

B yiczjss(‘:t(xi - ﬂ1))t (Vt(xi - :“1))
] : CZI ((1Xi o :u1)tv)t((xi o :u1)tv)

Z v (x; — )X, — ;) v = v'S,v

yeClass 1



Fisher Linear Discriminant Derivation

=  Similarly 87 =v'S,v
= Therefore 8+ 82=v'Sv+v'S,v=v'S, v
= Define between the class scatter matrix

Sg = (/11 — M )(:U1 — M )t
= S measures separation between the means of two
classes (before projection)

= Let's rewrite the separations of the projected means
2
(ﬂ1 - H, )2 — (Vt:u1 — Vt;uz)
= vy — 1, Nty — 11,)' v
=v'S,v



Fisher Linear Discriminant Derivation

= Thus our objective function can be written:

J(v)= (2, - 2,) _ v'Sgv

§2+82 viS,v

=  Minimize J(v) by taking the derivative w.r.t. v and
setting it to O

dv’Sijv’SWv — (d V’Sijv’SBv

d (dv dv

94 yv)-

dv (v'Syv)

- (2s,v)v's, v-(2S,v)v'S,v
(v'Syv)

=0



Fisher Linear Discriminant Derivation

= Needtosolve Vv'S,v(Szv)-v'S,v(S,v)=0

viS,v(S,v) v'S.v(S,v)
_ -0
~ v'S, v v'S, v
v)

t
= S V—Q(S =0
NLDw
= Szv =AS,Vv
¢ J

~
generalized eigenvalue problem




Fisher Linear Discriminant Derivation
S,v=AS,Vv
= |f Sy has full rank (the inverse exists), can convert
this to a standard eigenvalue problem
S,/S.,v=Av

=  But S5 x for any vector x, points in the same
direction as u; - 1, a

SgX = (,U1 _ﬂz)(ﬂ1 _:uz)tx = (1, _ﬂZ)m a(u, — )

= Thus can solve the eigenvalue problem immediately
v=S5,'(u - )

Su'SalSi’ (1, - u,)|= Si' o, - p)1= @|Sy (u, - )]

™

4 v



Fisher Linear Discriminant Example

= Data
= Class 1 has 5 samples ¢.,=[(1,2),(2,3),(3,3),(4,5),(5,5)]
= Class 2 has 6 samples ¢,=[(1,0),(2,1),(3,1),(3,2),(5,3),(6,5)]

Arrange data in 2 separate matrices
12 10
>k c,=|: :
5 5 6 5

C, =

b
5
4
3t o
2
1
0
1

Notice that PCA performs very
poorly on this data because the
direction of largest variance is not
helpful for classification



Fisher Linear Discriminant Example

= First compute the mean for each class
u, =mean (c,)=[3 3.6] u,=mean (c,)=[3.3 2]

= Compute scatter matrices S,and S, for each class
S, = 4*cov(c,)=[g_% ‘;g} S, =5*cov(cz)=[117é3 ;g}

= Within the class scatter:
27.3 24
Sw =S,+35; =[ 24 23.2}
= it has full rank, don’t have to solve for eigenvalues

= The inverse of S, is S,/ = inv (S, )= [_0&:’21 _0.021;1}

= Finally, the optimal line direction v
v=5, (4, - n,)= [_0‘_)'359}



Fisher Linear Discriminant Example

= Notice, as long as the line E s o o
has the right direction, its  , °
exact position does not il o S0 o
matter .

. 1t o e

= | ast step is to compute i .

the actual 1D vector y. . , ; :

Let’s do it separately for
each class

Y,=v'c!=[-0.65 0.73][; N g} = [0.81--- 0.4]

Y,=v'c) =|-0.65 0.73][8::: g} =[-0.65--- - 0.25]



Multiple Discriminant Analysis (MDA)

= Can generalize FLD to multiple classes

= |n case of ¢ classes, can reduce dimensionality to
1,2, 3,..., c-1 dimensions

= Project sample x;to a linear subspace y; = Vix;
= Vs called projection matrix




Multiple Discriminant Analysis (MDA)

= |Let = n;bythe number of samples of class i
= and y; be the sample mean of class i
= ube the total mean of all samples

1y,
ZX ﬂ—n;X,

l Xeclass i

det (V'S V)
det (V'S, V)
= within the class scatter matrix Sy is

= isi = i Z (O — 2 )%, — 1)

i=1 x, eclass i

= Dbetween the class scatter matrix Sgis

/ Z n, (g, — p ), — 1)

maximum rank is c -1

= Objective function: J(V)=



Multiple Discriminant Analysis (MDA)

det (V'S V)
J(V)= = ~
det (V'S, V)
First solve the generalized eigenvalue problem:

S,v=A1S,v

At most c¢-1 distinct solution eigenvalues
Let vy, v,,..., V., be the corresponding eigenvectors

The optimal projection matrix Vto a subspace of
dimension k is given by the eigenvectors
corresponding to the largest k eigenvalues

Thus can project to a subspace of dimension at
most c-1



FDA and MDA Drawbacks

= Reduces dimension only to k= ¢-1 (unlike PCA)

= For complex data, projection to even the best line may
result in unseparable projected samples

= Will fail:
1. J(v) is always 0: happens if y; = i,
OO
CO> OO
PCA performs PCA also

reasonably well fails: = =
here:

2. It J(v) is always large: classes have large overlap when

projected to any line (PCA will also fail)



