
CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 8



Today

� Continue with Dimensionality Reduction
� Last lecture:  PCA
� This lecture: Fisher Linear Discriminant



� PCA finds the most accurate data representation
in a lower dimensional space
� Project data in the directions of maximum variance

� Fisher Linear Discriminant project to a line which 
preserves direction useful for data classification

Data Representation vs. Data Classification

� However  the directions of maximum variance may 
be  useless for classification

apply PCA

to each class

separable

not separable



Fisher Linear Discriminant

� Main idea:  find projection to a line s.t. samples 
from different classes are well separated

bad line to project to,
classes are mixed up

Example in 2D

good line to project to,
classes are well separated



Fisher Linear Discriminant
� Suppose we have 2 classes and d-dimensional 

samples x1,…,xn where 
� n1 samples come from the first class
� n2 samples come from the second class

� consider projection on a line
� Let the line direction be given by unit vector v

v
ixvt x

i

� Scalar vtxi is the distance of 
projection of xi from the origin

� Thus it  vtxi is the projection of 
xi into a one dimensional 
subspace



Fisher Linear Discriminant

� How to measure separation between projections of 
different classes? 

� Thus the projection of sample xi onto a line in 
direction v is given by vtxi 
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� Let µµµµ1 and µµµµ2 be the means of classes 1 and 2

� Let   and       be the means of projections of 
classes 1 and 2

1
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� seems like a good measure21
~~ µµµµµµµµ −−−−



Fisher Linear Discriminant

� How good is               as a measure of separation?
� The larger             , the better is the expected separation

21
~~ µµµµµµµµ −−−−

� the vertical axes is a better line than the horizontal 
axes to project to for class separability 

� however 2121
~~ µµµµµµµµµµµµµµµµ −−−−>>>>−−−− ��
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Fisher Linear Discriminant

� The problem with                is that it does not 
consider the variance of the classes
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Fisher Linear Discriminant

� We need to normalize                by a factor which is 
proportional to variance
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� Define their scatter as 

� Have samples z1,…,zn .  Sample mean is ����
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� Thus scatter is just sample variance multiplied by n
� scatter measures the same thing as variance, the spread 

of data around the mean
� scatter is just on different scale than variance

larger scatter: smaller scatter:



Fisher Linear Discriminant

� Fisher Solution: normalize                 by scatter21
~~ µµµµµµµµ −−−−
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� Scatter for projected samples of class 1 is 
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� Let yi = vtxi , i.e. yi ‘s  are the projected samples



Fisher Linear Discriminant

� We need to normalize by both scatter of class 1 and 
scatter of class 2
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� Thus Fisher linear discriminant is to project on line 
in the direction v which maximizes

want projected means are far from each other

want scatter in class 2 is as 
small as possible, i.e. samples 
of class 2 cluster around the 
projected mean 2

~µµµµ

want scatter in class 1 is as 
small as possible, i.e. samples 
of class 1 cluster around the 
projected mean 1

~µµµµ



Fisher Linear Discriminant
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� If we find v which makes J(v) large, we are 
guaranteed that the classes are well separated

1
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2
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small       implies that 
projected samples of 
class 1 are clustered 
around projected mean

1
~s small       implies that

projected samples of 
class 2 are clustered 
around projected mean

2
~s

projected means are far from each other



Fisher Linear Discriminant Derivation

� All we need to do now is to express J explicitly as a 
function of v and maximize it
� straightforward but need linear algebra and Calculus

(((( )))) (((( ))))
2
2

2
1

2
21

~~
~~

ss
vJ

++++
−−−−====

µµµµµµµµ

� Define the separate class scatter matrices S1 and 
S2 for classes 1 and 2.  These measure the scatter 
of original samples xi (before projection) 
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Fisher Linear Discriminant Derivation

� Now define the within the class scatter matrix
21 SSSW ++++====

� Recall that (((( ))))����
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� Using yi = vtxi   and 11
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Fisher Linear Discriminant Derivation

� Similarly vSvs t
2
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� Let’s rewrite the separations of the projected means
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� Define between the class scatter matrix
(((( ))))(((( ))))t

BS 2121 µµµµµµµµµµµµµµµµ −−−−−−−−====
� SB measures separation between the means of two 

classes (before projection) 



Fisher Linear Discriminant Derivation

� Thus our objective function can be written:

� Minimize J(v) by taking the derivative w.r.t. v and 
setting it to 0
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Fisher Linear Discriminant Derivation

� Need to solve (((( )))) (((( )))) 0====−−−− vSvSvvSvSv WB
t

BW
t
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generalized eigenvalue problem



Fisher Linear Discriminant Derivation

� If SW has full rank (the inverse exists), can convert 
this to a standard eigenvalue problem

vSvS WB λλλλ====

vvSS BW λλλλ====−−−−1

� But SB x  for any vector x, points in the same 
direction as µµµµ1 - µµµµ2
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Fisher Linear Discriminant Example
� Data

� Class 1 has 5 samples c1=[(1,2),(2,3),(3,3),(4,5),(5,5)]
� Class 2 has 6 samples c2=[(1,0),(2,1),(3,1),(3,2),(5,3),(6,5)]

� Arrange data in 2 separate matrices
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� Notice that PCA performs very 
poorly on this data because the 
direction of largest variance is not 
helpful for classification



Fisher Linear Discriminant Example

� First compute the mean for each class
(((( )))) [[[[ ]]]]6.33cmean 11 ========µµµµ (((( )))) [[[[ ]]]]23.3cmean 22 ========µµµµ
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� Compute scatter matrices S1 and S2 for each class
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� Within the class scatter:

� it has full rank, don’t have to solve  for eigenvalues

(((( ))))
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� Finally, the optimal line direction v
(((( ))))
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Fisher Linear Discriminant Example

� Notice, as long as the line 
has the right direction, its 
exact position does not 
matter

� Last step is to compute 
the actual 1D vector  y.  
Let’s do it separately for 
each class

[[[[ ]]]] [[[[ ]]]]4.081.052
5173.065.011 �
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� ====
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Multiple Discriminant Analysis (MDA)
� Can generalize FLD to multiple classes
� In case of c classes, can reduce dimensionality to 

1, 2, 3,…, c-1 dimensions
� Project sample xi to a linear subspace yi = V txi

� V is called projection matrix



Multiple Discriminant Analysis (MDA)

� Objective function: (((( )))) (((( ))))
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� between the class scatter matrix SB is
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maximum rank is c -1

� ni by the number of samples of class i
� and µµµµi be the sample mean of class i
� µ µ µ µ be the total mean of all samples



Multiple Discriminant Analysis (MDA)

(((( )))) (((( ))))
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� The optimal projection matrix V to a subspace of 
dimension k is given by the eigenvectors 
corresponding to the largest k eigenvalues

� First solve the generalized eigenvalue problem:
vSvS WB λλλλ====

� At most c-1 distinct solution eigenvalues

� Let v1, v2 ,…, vc-1 be the corresponding eigenvectors

� Thus can project to a subspace of dimension at 
most c-1



FDA and MDA Drawbacks
� Reduces dimension only to k = c-1 (unlike PCA)

� For complex data, projection to even the best line may 
result in unseparable projected samples

� Will fail:
1. J(v) is always 0:  happens if µµµµ1  = µµµµ2

PCA performs 
reasonably well 
here:

PCA also 
fails:

2. If J(v) is always large: classes have large overlap when 
projected to any line (PCA will also fail)


