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Abstract

In this paper we address the problem of minimizing
a large class of energy functions that occur in early
viston. The major restriction is that the energy func-
tion’s smoothness term must only involve pairs of piz-
els. We propose two algorithms that use graph cuts to
compute a local minimum even when very large moves
are allowed. The first move we consider is an «a-3-
swap: for a pair of labels a, B, this move exchanges
the labels between an arbitrary set of pizels labeled o
and another arbitrary set labeled 3. Our first algo-
rithm generates a labeling such that there is no swap
move that decreases the energy. The second move we
consider is an a-expansion: for a label a, this move
assigns an arbitrary set of pizels the label a. Our sec-
ond algorithm, which requires the smoothness term to
be a metric, generates a labeling such that there is no
ezpansion move that decreases the energy. Moreover,
this solution is within a known factor of the global min-
imum. We experimentally demonstrate the effective-
ness of our approach on image restoration, stereo and
motion.

1 Energy minimization in early vision

Many early vision problems require estimating
some spatially varying quantity (such as intensity or
disparity) from noisy measurements. Such quantities
tend to be piecewise smooth; they vary smoothly at
most points, but change dramatically at object bound-
aries. Every pixel p € P must be assigned a label in
some set £; for motion or stereo, the labels are dispar-
ities, while for image restoration they represent inten-
sities. The goalis to find a labeling f that assigns each
pixel p € P a label f, € L, where f is both piecewise
smooth and consistent with the observed data.

These vision problems can be naturally formulated
in terms of energy minimization. In this framework,
one seeks the labeling f that minimizes the energy

E(f) = Esmooth(f)

Here Egmooth measures the extent to which f is not

+ Edata(f)'

piecewise smooth, while Eq4:, measures the disagree-
ment between f and the observed data. Many differ-
ent energy functions have been proposed in the liter-
ature. The form of Eg,:4 is typically

Egata(f) = Z Dy(fp),

pEP

where D, measures how appropriate a label is for the
pixel p given the observed data. In image restoration,
for example, Dp(f,) is typically (f, — i,)°, where i, is
the observed intensity of the pixel p.

The choice of Egpmootn is a critical issue, and
many different functions have been proposed. For
example, in standard regularization-based vision
[6], Esmootr makes f smooth everywhere. This
leads to poor results at object boundaries. En-
ergy functions that do not have this problem are
called discontinuity-preserving. A large number of
discontinuity-preserving energy functions have been
proposed (see for example [7]). Geman and Geman’s
seminal paper [3] gave a Bayesian interpretation of
many energy functions, and proposed a discontinuity-
preserving energy function based on Markov Random
Fields (MREF’s).

The major difficulty with energy minimization for
early vision lies in the enormous computational costs.
Typically these energy functions have many local min-
ima (i.e., they are non-convex). Worse still, the space
of possible labelings has dimension |P|, which is many
thousands. There have been numerous attempts to
design fast algorithms for energy minimization. Simu-
lated annealing was popularized in computer vision by
[3], and is widely used since it can optimize an arbi-
trary energy function. Unfortunately, minimizing an
arbitrary energy function requires exponential time,
and as a consequence simulated annealing is very slow.
In practice, annealing is inefficient partly because at
each step it changes the value of a single pixel.

The energy functions that we consider in this pa-
per arise in a variety of different contexts, including
the Bayesian labeling of MRF’s. We allow D, to be



arbitrary, and consider smoothing terms of the form

S Vol fd, Q)

{p,a}eN

where N is the set of pairs of adjacent pixels. In spe-
cial cases such energies can be minimized exactly. If
the number of possible labels is |£| = 2 then the exact
solution can be found in polynomial time by comput-
ing a minimum cost cut on a certain graph [4]. If
L is a finite 1D set and the interaction potential is
V(fp, fq) = |fo— fq| then the exact minimum can also
be found efficiently via graph cuts [5, 2]. In general,
however, the problem is NP-hard [8].

In this paper we develop algorithms that approx-
imately minimize energy E(f) for an arbitrary finite
set of labels £ under two fairly general classes of in-
teraction potentials V: semi-metric and metric. V is
called a semi-metric on the space of labels £ if for
any pair of labels o, 8 € L it satisfies two properties:
V(a,8) =V(B,a) >0 and V(e,) =0 & a=g0.
If V also satisfies the triangle inequality

V(a,8) < V(a,y)+V(v,6) (2)

for any «, 8,7 in £ then V is called a metric. Note
that both semi-metric and metric include impor-
tant cases of discontinuity-preserving interaction po-
tentials. For example, the truncated L, distance
V(a, ) = min(K, ||a — B]|) and the Potts interaction
penalty V(a, ) = 6(a # () are both metrics.

The algorithms described in this paper generalize
the approach that we originally developed for the case
of the Potts model [2]. In particular, we compute a la-
beling which is a local minimum even when very large
moves are allowed. We begin with an overview of our
energy minimization algorithms, which are based on
graph cuts. Our first algorithm, described in section 3,
is based on a-B-swap moves and works for any semi-
metric Vip o3’s. Our second algorithm, described in
section 4, is based on more interesting a-expansion
moves but works only for metric Vi, ¢3’s (i.e., the addi-
tional triangle inequality constraint is required). Note
that a-expansion moves produce a solution within a
known factor of the global minimum of E. A proof of
this can be found in [8].

Esmooth =

2 Energy minimization via graph cuts

The most important property of these methods is
that they produce a local minimum even when large
moves are allowed. In this section, we discuss the
moves we allow, which are best described in terms of
partitions. We sketch the algorithms and list their ba-
sic properties. We then formally introduce the notion
of a graph cut, which is the basis for our methods.

1. Start with an arbitrary labeling f
Set success := 0
3. For each pair of labels {a,3} C L
3.1. Find f =argmin E(f') among f' within
one a-f swap of f (see Section 3)

3.2, If E(f)<E(f), set f = f
and success := 1
4. If success = 1 goto 2
5. Return f

[\

1. Start with an arbitrary labeling f
Set success := 0
3. For each label a € L
3.1. Find f =argmin E(f') among f' within
one a-expansion of f (see Section 4)

3.2. If E(f)<E(f), set f := f
and success := 1
4. If success = 1 goto 2
5. Return f

N

Figure 1: Our swap move algorithm (top) and expan-
sion move algorithm (bottom).

2.1 Partitions and move spaces

Any labeling f can be uniquely represented by a
partition of image pixels P = {P; |l € L} where P; =
{p € P| fp =1} is a subset of pixels assigned label .
Since there is an obvious one to one correspondence
between labelings f and partitions P, we can use these
notions interchangingly.

Given a pair of labels a, 3, a move from a partition
P (labeling f) to a new partition P’ (labeling f') is
called an «-8 swap if P, = P, for any label | # a, (.
This means that the only difference between P and P’
is that some pixels that were labeled o in P are now
labeled 8 in P’, and some pixels that were labeled 8
in P are now labeled « in P’.

Given alabel @, a move from a partition P (labeling
f) to a new partition P’ (labeling f') is called an «-
ezpansion if P, C P., and P} C P; for any label I # .
In other words, an a-expansion move allows any set of
image pixels to change their labels to a.

Note that a move which gives an arbitrary label « to
a single pixel is both an a-03 swap and an a-expansion.
As a consequence, the standard move space used in
annealing is a special case of our move spaces.

2.2 Algorithms and properties

We have developed two energy minimization algo-
rithms, which are shown in figure 1. The structure of



the algorithms is quite similar. We will call a single
execution of steps 3.1-3.2 an iteration, and an execu-
tion of steps 24 a cycle. In each cycle, the algorithm
performs an iteration for every label (expansion move
algorithm) or for every pair of labels (swap move al-
gorithm), in a certain order that can be fixed or ran-
dom. A cycle is successful if a strictly better labeling
is found at any iteration. The algorithm stops after
the first unsuccessful cycle since no further improve-
ment is possible. Obviously, a cycle in the swap move
algorithm takes |£|? iterations, and a cycle in the ex-
pansion move algorithm takes |L| iterations.

These algorithms have several important proper-
ties. First, the algorithms are guaranteed to terminate
in a finite number of cycles; in fact, under fairly gen-
eral assumptions we can prove termination in O(|P|)
cycles [8]. However, in the experiments we report in
section 5, the algorithm stops after a few cycles and
most of the improvements occur during the first cycle.
Second, once the algorithm has terminated, the en-
ergy of the resulting labeling is a local minimum with
respect to a swap or an expansion move. Finally, the
expansion move algorithm produces a labeling f such
that E(f*) < E(f) < 2k-E(f*) where f* is the global

minimum and k = :jsfg((g:g)) z;ég% (see [8]).

2.3 Graph cuts

The key part of each algorithm is step 3.1, where
graph cuts are used to efficiently find f. Let G = (V, )
be a weighted graph with two distinguished vertices
called the terminals. A cut C C £ is a set of edges
such that the terminals are separated in the induced
graph G(C) = (V,£—C). In addition, no proper subset
of C separates the terminals in G(C). The cost of the
cut C, denoted |C|, equals the sum of its edge weights.

The minimum cut problem is to find the cut with
smallest cost. There are many algorithms for this
problem with low-order polynomial complexity [1]; in
practice they run in near-linear time for our graphs.

Step 3.1 uses a single minimum cut on a graph
whose size is O(|P|). The graph is dynamically up-
dated after each iteration. The details of this mini-
mum cut are quite different for the swap move and
the expansion move algorithms, as described in the
next two sections.

3 Finding the optimal swap move
Given an input labeling f (partition P) and a pair
of labels a, 3, we wish to find a labeling f that min-
imizes F over all labelings within one a-8 swap of f.
This is the critical step in the algorithm given at the
top of Figure 1. Our technique is based on comput-
ing a labeling corresponding to a minimum cut on a

Figure 2: An example of the graph G,z for a 1D image.
The set of pixels in the image is Pog = Po UPg where
Po = {p,T,S} and Pﬂ = {qa fee ,’LU}.

graph Gog = (Vag,Eap). The structure of this graph
is dynamically determined by the current partition P
and by the labels «, (.

This section is organized as follows. First we de-
scribe the construction of G,g for a given f (or P).
We show that cuts C on Gap correspond in a natural
way to labelings f¢ which are within one a-3 swap
move of f. Theorem 1 shows that the cost of a cut
is |C| = E(f€) plus a constant. A corollary from this
theorem states our main result that the desired label-
ing f equals f¢ where C is a minimum cut on Gag.

The structure of the graph is illustrated in Figure 2.
For legibility, this figure shows the case of 1D image.
For any image the structure of G, will be as follows.
The set of vertices includes the two terminals o and 3,
as well as image pixels p in the sets P, and Pg (that
is fp € {a,B}). Thus, the set of vertices V,pg consists
of o, B, and Pog = Po U Pg. Each pixel p € Pug is
connected to the terminals o and 3 by edges ¢ and
tg, respectively. For brevity, we will refer to these
edges as t-links (terminal links). Each pair of pixels
{p,q} C Pap which are neighbors (i.e. {p,q} € N) is
connected by an edge ey, o3 which we will call an n-link
(neighbor link). The set of edges o thus consists of

Uperp.,{tp,t5} (the ¢-links) and | e pg) (the
n-links). The weights assigned to the edges are

| edge | weight | for |
ty Dp(a) + E:;;‘C’:; Vi3 (s fq) | P € Pap
tg Dy(B) + qu;?;\f; Vip,g} (8, fq) | P € Pap
€{p.q} Vip.ay(a: ) 1{5&]’7’6&/\;




Any cut C on G,p must sever (include) exactly one ¢-
link for any pixel p € Pag: if neither ¢-link were in C,
there would be a path between the terminals; while if
both ¢-links were cut, then a proper subset of C would
be a cut. Thus, any cut leaves each pixel in Pg with
exactly one ¢-link. This defines a natural labeling f¢
corresponding to a cut C on Gag,

o iftg‘eCforpe’Paﬁ
f£=3X B if tPeC for p€ Pag (3)
fp for peP,p ¢ Pas.

In other words, if the pixel p is in Pqpg then p is as-
signed label a when the cut C separates p from the
terminal «; similarly, p is assigned label 8 when C
separates p from the terminal 8. If p is not in Pag
then we keep its initial label f,. This implies

Lemma 1 A labeling f€ corresponding to a cut C on
Gap is one a-f swap away from the initial labeling f.

It is easy to show that a cut C severs an n-link
€{p,q} Detween neighboring pixels on G, if and only
if C leaves the pixels p and ¢ connected to different
terminals. Formally

Property 1 For any cut C and for any n-link €{p,q}’

a) If t5,ty €C then eqpq €C.
b) If tg,tf; €C then e q €C.
c) If 1,13 €C then egpq €C.
d) If 5,18 €C then egyq €C.

These properties are illustrated in figure 3. The next
lemma is a consequence of property 1 and equation 3.

Lemma 2 For any cut C and for any n-link ey o

ICNepal = Vipa (fz?’ fg)
Lemmas 1 and 2 plus property 1 yield

Theorem 1 There is a one to one correspondence be-
tween cuts C on Gog and labelings that are one a-f8
swap from f. Moreover, the cost of a cut C on Gag is
IC| = E(f°) plus a constant.

ProOOF: The first part follows from the fact that the
severed ¢-links uniquely determine the labels assigned
to pixels p and n-links that must to be cut. We now
compute the cost of a cut C, which is

lel = 3 len{e, 8y + >

€Pa {p.a}eN
P # {r.a}CPop

[CNegp g1l (4)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

\ LA
N \
\ \
N \
N ’ \
G/ \

Property 1(a) Property 1(b) Property 1(c,d)

Figure 3: Properties of a cut C on G,g for two pixels
p,q € N connected by an n-link ey, 1. Dotted lines
show the edges cut by C and solid lines show the edges
remaining in the induced graph G(C) = (V, € — C).

Note that for p € Pog we have

Dp(fg) + Z V{p,q}(fpcafq)-

aENp
a€Pap

lcnd{t, g} =

Lemma 2 gives the second term in (4). Thus, the total
cost of a cut C is

Z Dp(f;f) +

PEPap

|C| = Z V{p,q}(ff,ff)-

{p.a}EN
Porqa€P,yp

This can be rewritten as |C| = E(f¢) — K where

K = Z Dp(fp) + Z V{p,q}(fl”f‘l)

P {p.a}eN
PEPas {P.a}NPop=0
is the same constant for all cuts C. [ ]

Corollary 1 The optimal a-B swap from f is f = f€
where C is the minimum cut on Gag.

4 Finding the optimal expansion move

Given an input labeling f (partition P) and a la-
bel o, we wish to find a labeling f that minimizes E
over all labelings within one a-expansion of f. This is
the critical step in the algorithm given at the bottom
of Figure 1. In this section we describe a technique
that solves the problem assuming that each Vi, o3 is
a metric, and thus satisfies the triangle inequality (2).
Some important examples of metrics are given in the
introduction. Our technique is based on computing a
labeling corresponding to a minimum cut on a graph
Go = (Va, ). The structure of this graph is deter-
mined by the current partition P and by the label a.



Figure 4: An example of G, for a 1D image. The set of
pixels in the image is P = {p,q,7, s} and the current
partition is P = {Py,Pa, Po} where Py = {p}, P» =
{g,7}, and P, = {s}. Two auxiliary nodes a = a(p ¢},
b = ay, s are introduced between neighboring pixels
separated in the current partition. Auxiliary nodes
are added at the boundary of sets P;.

As before, the graph dynamically changes after each
iteration.

This section is organized as follows. First we de-
scribe the construction of G, for a given f (or P)
and a. We show that cuts C on G, correspond in
a natural way to labelings f¢ which are within one
a-expansion move of f. Then, based on a number of
simple properties, we define a class of elementary cuts.
Theorem 2 shows that elementary cuts are in one to
one correspondence with labelings that are within one
a-expansion of f, and also that the cost of an elemen-
tary cut is |C| = E(f€). A corollary from this theo-
rem states our main result that the desired labeling f
equals fC¢ where C is a minimum cut on G,.

The structure of the graph is illustrated in Figure 4.
For legibility, this figure shows the case of 1D image.
The set of vertices includes the two terminals o and &,
as well as all image pixels p € P. In addition, for each
pair of neighboring pixels {p,q} € N separated in the
current partition (i.e. f, # fy) we create an auziliary
verter a;p q3- Auxiliary nodes are introduced at the
boundaries between partition sets P; for [ € £. Thus,
the set of vertices is

a = { a, @, Pa U
{p.q} EN
fp#fq

ap,q} }-

Fach pixel p € P is connected to the terminals o and
@ by t-links t5 and t3, correspondingly. Each pair
of neighboring pixels {p,¢} € N which are not sepa-

rated by the partition P (i.e. f, = f;) is connected by
an n-link ey, 1. For each pair of neighboring pixels
{p,q} e N such that f» # [y we create a triplet of
edges £p,q) = {€{p,a}s (aq) ta} Where a = agpqy
is the corresponding auxiliary node. The edges ey, 4}
and efq 4} connect pixels p and q to ayp 4} and the
t-link ¢, connects the auxiliary node a(, o1 to the ter-
minal @. So we can write the set of all edges as

= { U{ta tp} U Ep,a} > U €{p,a} }-

O
The weights assigned to the edges are
| edge | weight | for
tg‘ o0 p € Py
tg Dy(fp) P & Pa
tp Dy(a) peP

eipat | Vipgp(fps

)
) | {ma} eN, fo#fq

(
€faqr | Vimar(o fo
(

tg V{p,q} fp» q)

epat | Vieay(for@) | {p,a} € N, fo=1q

As in section 3, any cut C on G, must sever (in-
clude) exactly one ¢-link for any pixel p € P. This
defines a natural labeling f€ corresponding to a cut C
on G,. Formally,

£ a if tyecC
PO £ if tgec

In other words, a pixel p is assigned label « if the cut
C separates p from the terminal a and, p is assigned
its old label f, if C separates p from &. Note that for
p & Po the terminal & represents labels assigned to
pixels in the initial labeling f. Clearly we have

vpeP. (5

Lemma 3 A labeling fC corresponding to a cut C on
Gq is one a-expansion away from the initial labeling f.

It is also easy to show that a cut C severs an n-
link ey, .3 between neighboring pixels {p, ¢} € N such
that f, = f, if and only if C leaves the pixels p and
q connected to different terminals. In other words,
Property 1 holds when we substitute “a” for “5”. We
will refer to this as Property 1(&). Analogously, we
can show that Property 1(@&) and equation (5) estab-
lish Lemma 2 for the n-links €{p,q} ON Go.



Property 2(a)

Property 2(b) Property 2(c,d)

Figure 5: Properties of a minimum cut C on G, for two
pixel p,q € N such that f, # f,. Dotted lines show
the edges cut by C and solid lines show the edges in
the induced graph G(C) = (V,& — C).

Consider now the set of edges £, 43 corresponding
to a pair of neighboring pixels {p,q} € A such that
fp # fq- In this case, there are several different ways
to cut these edges even when the pair of severed ¢-links
at p and ¢ is fixed. However, a minimum cut C on G,
is guaranteed to sever the edges in £, .1 depending
on what ¢-links are cut at the pixels p and gq.

The rule for this case is described in Property 2
below. Assume that a = a(, ) is an auxiliary node
between the corresponding pair of neighboring pixels.

Property 2 A minimum cut C on G, satisfies:

a) If t5,tye€C then CNEgpgy =0

b) If t5,t3e€C then CN&p gy =ta.

c) If t5,ty €C then CNEggy = eipa}-
d) If t5,ty€C then CNEgpgy = €faq)-

Property (a) results from the fact that no subset of C
is a cut. The others follow from the minimality of |C|
and the fact that |ep o3|, |eqa,q}| @nd [t5] satisfy the
triangle inequality so that cutting any one of them is
cheaper than cutting the other two together. These
properties are illustrated in Figure 5.

Lemma 4 If {p,q} € N and f, # fq then the mini-
mum cut C on G, satisfies |CNEG, 1| = V{p,q}(f;f,ch).

ProOF: The equation follows from property 2, equa-
tion (5), and the edge weights. [

Property 1(@) holds for any cut, and Property 2
holds for a minimum cut. However, there can be other
cuts besides the minimum cut that satisfy both prop-
erties. We will define an elementary cut on G, to be
a cut that satisfies Properties 1(a) and 2.

Theorem 2 Let G, be constructed as above given f
and o. Then there is a one to one correspondence
between elementary cuts on G, and labelings within
one a-expansion of f. Moreover, for any elementary
cut C we have |C| = E(f°).

ProOF: We first show that an elementary cut C is
uniquely determined by the corresponding labeling f€.
The label fg at the pixel p determines which of the
t-links to p is in C. Property 1(&) shows which n-links
€{p,q} between pairs of neighboring pixels {p,q} such
that f, = fq should be severed. Similarly, Property 2
determines which of the links in £, ;3 corresponding
to {p,q} € N such that f, # f, should be cut.
The cost of an elementary cut C is

el = Yolen{e, (6)

pEP
+ Z ICNepql + Z ICNEp,gpl-
{p.a}EN {p.a} N
fp=1Fq fp#fq

It is easy to show that for any pixel p € P we have
Icn{te, 15} = Dp(f5). Lemmas 2 and 4 hold for ele-
mentary cuts, since they are based on Properties 1(&)
and 2. Thus, the total cost of a elementary cut C is

|C| = ZDp(fg)’*' Z V{p,q}(ff,ff) = E(fc)

PeEP {p.a}eN
Therefore, |C| = E(f°). |

Our main result is a simple consequence of this the-
orem, since the minimum cut is an elementary cut.

Corollary 2 The optimal o expansion from f is f =
f€ where C is the minimum cut on Gq.

5 Experimental results

For our experiments, we used three energy func-
tions, each with a quadratic D,. The first energy
function, called F;, uses the truncated quadratic
Vit (Fos fo) = min(K, (f, — f4)?) (for some constant
K) as its smoothness term. This choice of V does not
obey the triangle inequality, so we minimized E; us-
ing our swap move method. The second (E2) and the
third (E3) energy functions use, correspondingly, the
Potts model and the truncated L. distance as their
smoothness penalty V. Both of these obey the tri-
angle inequality and we minimized Fs and Ej3 with
our expansion move method. We compared against
annealing; we implemented several different annealing
variants, and used the one that gave the best per-
formance. This was the Metropolis sampler with a
linearly decreasing temperature schedule.



Energy

Image Restoration. To illustrate the importance
of different choices of V, consider the image restora-
tion problem shown in the top row of figure 7. The
original image contains large constant-intensity re-
gions (the diamonds) which are gradually shaded, as if
there were a light source to the left of the image. This
image is corrupted with normally-distributed noise to
produce the input image shown. This example demon-
strates the need for non-Potts energy functions, as
minimizing FEy gives significant “banding” problems
(shown in the second image). By selecting an energy
function with a truncated quadratic Vi, .3, we obtain
the improved results shown at right.

The energy computed by our swap move method
is shown below as a function of time. Note that
we produce a very low energy after the first itera-
tion, while annealing decreases the energy very slowly.

‘ < Simulated annealing ® Our method ‘
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The energy values that we obtain for this and two
more examples are shown in figure 6. The energy
curves as a function of time are very similar to the
diamond example shown above, but are omitted to
save space. We also include the ratio between an-
nealing’s energy and ours. The third row for each
image gives the best energy that annealing eventually
achieves, when run until it is making very minimal
progress. In this case, annealing eventually achieves a
small improvement.

It is worthwhile to analyze Egmootn, Since in our
experience this correlated much more strongly with
overall image quality than E. This is partly due to
the fact that D, rises so rapidly; as a result, most
labels can be easily eliminated for a given pixel.

Motion and stereo. We also did energy minimiza-
tion on several standard images, including the SRI

tree sequence (taken from a camera moving along a
rail) and the rock stereo pair. We compared our swap
move and expansion move methods (for E; and Es,
correspondingly) with simulated annealing. We ini-
tialized both methods with the results of normalized
correlation, which are also shown in the figure.

For both images, the energy that annealing achieves
after more than 15 hours is significantly worse than
the energy we obtain in around 200 seconds. We have
experimented with a number of other images and ob-
tained similar results.
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Annealing  Ratio | Our results

Annealing Ratio

Diamond (image restoration, Ey

First cycle (¢ = 36) 1,577 55,892 35.5 637 9,658 15.2

Last cycle (¢ = 389) 1,472 15,215 10.3 576 8,475 14.7

Best annealing (¢ = 417, 317) — 1,458 — — 571 —
Tree image (motion, F1)

First cycle (¢ = 29) 2,591 3,604 1.4 974 2,146 2.2

Last cycle (¢ = 183) 2,255 2,449 1.1 768 1,078 1.4

Best annealing (¢ = 56, 170) — 2,418 — 1,050 —
Rock image (stereo, E3)

First cycle (¢ = 204) 780 1,635 2.1 270 699 2.6

Last cycle (¢ = 431) 776 1,557 2.0 270 626 2.3

Best annealing (¢ = 56, 645) — 1,480 — — 577 —

Figure 6: Comparative energy minimization results for our methods and simulated annealing
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Figure 7: Comparative results
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