
Object Oriented

Programming

1-2 1-2

Objectives

• To review the concepts and terminology

of object-oriented programming

• To discuss some features of object-

oriented design

1-3

Review: Objects

• In Java and other Object-Oriented Programming

(OOP) languages, the focus is on objects

• Objects are entities that can do actions or be

acted upon in a Java program

• All objects have

• Properties

• These are the data about an object

• In Java we call them attributes or fields or

instance variables

• Behaviours (actions)

• In Java they are implemented as methods

(more specifically, instance methods)

1-4

Review: Objects and Classes

• Every object belongs to a specific class

• Objects that belong to the same class have

the same properties and can perform the

same actions

• We can think of a class as being a

template or pattern or model or

definition for objects of that class

1-5

Review: Object-Oriented Programming

• Object-oriented programs consist of
interacting objects

• Objects are defined by classes

• Objects are created by objects of other classes
(client classes) which use them in implementing a
programming solution to a problem

1-6

Example: Social Networking

• Suppose we want to keep track of social

contact information for our friends /

relatives

• We wish to write a program that allows

us to add contact information of a friend

to our list of friends, remove a contact

from the list, and print information about

all our contacts.

Software Development Life Cycle

The process of designing a computer

program has several steps:

• Specification

• Design

• Implementation

• Testing and debugging

• Maintenance

1-7

Example: Social Networking

• Part of OOP design is deciding on what

classes we will need for our problem

• Let's start with a class called Person,

that will model the information about

one person in our social network

1-8

1-9

Review: Class Definition

• A class definition consists of

• Attribute declarations

(also known as fields or instance

variables)

• Constructor definitions

• Method definitions

• A class definition is stored in a file

• With the same name as the class

• With a .java extension on the file

1-10

Example: Person Class

• Attributes (instance variables, fields)

• What kind of information do we want to have

about a person? Let’s keep it short for now

• Person's name

• Email address

• What type should each of these be?

• A name can be a string

• An email address can be a string

1-11

Example Python: Person Class

class Person:

 def __init__(self, firstName=“”, lastName,=“” email=“”):

 self.firstName = firstName

 self.lastName = lastName

 self.email = email

•Note in Python we can assign default values to

the attributes in this case we used an empty

string

1-12

Example Java: Person Class

public class Person{

/* Attribute declarations */

private String lastName;

private String firstName;

private String email;

• Why are the attributes private?

• Note that the instance variables are just being

declared here (not explicitly assigned values)

1-13

Review: Constructors

• A constructor is a special method that is

called automatically when an object is

created with the new operator

• Its purpose is to initialize the attributes of an

object when the object is created

• In Python we use the special method __init__ to

do the job of a constructor

• In Java a constructor has the same name as the

class name

1-14

Example: Person class
/**

* Constructor initializes the person's name

* and email address

*/

public Person(String firstName, String lastName,String email) {

 this.lastName = lastName;

 this.firstName = firstName;

 this.email = email;

}

Compared to Python, in Java one must EXPLICITLY give types to the

attributes. Also note the difference between the keyword this vs Python’s

self.

1-15

Review: Terminology

• Keyword this similar to self in Python

• Scope of variables

• Scope refers to the parts of the code

in which those variables can be used

• Scope of instance variables?

• Formal parameters

• What is their scope?

1-16

Example: Person Class

• What methods might we want to have?

• accessor methods (aka getters)

• modifier methods (aka setters)

• toString method (in Python this is __repr__ or

__str__

• equals method (in Python this is __eq__)

• two Person objects are the same if they have

the same first name and same last name

1-17

/**

* setEmail method sets the person's

email address

* @param email

*/

public void setEmail (String email) {

 this.email = email;

}

Example: Person class

Note that Python uses WHITESPACE to tie blocks of code

together Java uses BRACES and SEMICOLONS (you

should still code with whitespace as well)

What is this @param?

• Javadoc documentation (we will do it in Lab 2)

"""

setEmail method sets the person's

email address.

:param email: email address to set

"""

def setEmail(self,email):

 self.email=email

Java Python

1-18

/**

* toString method returns a string representation of the person

* @return string with first name and last name, email address

*/

public String toString() {

 String s = this.firstName + " " + this.lastName + "\t" + this.email ;

 return s;

}

Example: Person class
def __repr__(self):

 s = self.firstName +" " self.lastName +”\t” + self.email

 return s

Java

Python

1-19

Discussion

• What is the return type of this method?

• What is \t?

• What kind of variable is s?

• A reference variable of type String

• What is its scope?
• It is a local variable

1-20

/**

* equals determines whether two persons have the same name

* @param other other Person object that this is compared to

* @return true if they have the same first and last name, false otherwise

*/

public boolean equals(Person other) {

 if (this.firstName.equals(other.firstName) && this.lastName.equals(other.lastName))

 return true;

 else

 return false;

 }

• What is this.firstName? other.firstName?

• Where is the equals method that is used in the code?

def equals(self, other):

 if self.firstName == other.getFirstName() and self.lastName == other.getLastName() :

 return True

 else :

 return False

Java

Python

1-21

Example: SocialNetwork Class

• We're now ready to provide a class that allows

us to keep track of our social contacts

• What attributes might it have?

• A list of Person objects

• We'll use an array as our data structure

(this is similar to the notation of a list in

Python)

• A count of the number of friends currently in

the list

• Why is this not necessarily the same as

the size of the array?

1-22

Python:

from Person import Person

class SocialNetwork:

 def __init__(self,num=0):

 self.friends =[]

 self.numFriends =num

Example: SocialNetwork Class

Java:

/* Attribute declarations */

// array of persons (list of friends)

private Person[] friendList;

//current number of friends in list

private int numFriends;

/* Constant definition */

private final int DEFAULT_MAX_FRIENDS = 10;

Notice In Python we declare the attributes IN the constructor itself

1-23

Review: Terminology

• Keyword final (no such thing in Python,

by convention we used all capitalized

words to represent a constant)

• Array declaration [] (array’s and python

lists do NOT always act the same)

1-24

Example: SocialNetwork Class

• Constructors:

• One that creates an array of default size

• One that takes the size of the array as a

parameter

• What do we call it when there is more

than one constructor?

• overloading

• In Python we do this by setting

defaults in the method

Java:

/**

* Constructor creates Person array of default size

*/

public SocialNetwork () {

 friendList = new Person[DEFAULT_MAX_FRIENDS];

 numFriends = 0;

}

/**

* Constructor creates Person array of specified size

* @param max maximum size of array

*/

public SocialNetwork(int max) {

 friendList = new Person[max];

 numFriends = 0;

}

Python:

from Person import Person

class SocialNetwork:

 def __init__(self,num=0):

 self.friends =[]

 self.numFriends =num

Notice how there is only one constructor for Python but it uses default values to allow for

different uses of it.

Also note than in Java arrays must MUST have an specified size; lists can grow

dynamically in Python.

1-26

Discussion

• What is stored in the friendList array

after the following is executed?

friendList = new Person[DEFAULT_MAX_FRIENDS];

• How does this differ from Python?

 self.friends =[]

1-27

Example: SocialNetwork Object

contacts = new SocialNetwork(5);

contacts

friendList

numFriends

0

1-28

Example: SocialNetwork Class

• Instance methods: let's start with methods

to

• add a person to the list

• remove a specified person from the list

• clear the list, i.e. remove all persons

• return how many persons are in the list

• toString

• (we will add other methods later)

Java:

/**

* add method adds a person to the list

* @param firstName

* @param lastName

* @param email

*/

public void add (String firstName, String lastName, String email) {

 // create a new Person object

 Person friend = new Person (firstName, lastName, email);

 // add it to the array of friends

 // but, what if array is not big enough?

 // double its capacity automatically

 if (numFriends == friendList.length)

 expandCapacity();

 // add reference to friend at first free spot in array

 friendList [numFriends] = friend;

 numFriends++;

}

Python:

def add(self, first, last, email):

 aFriend = Person(first,last,email)

 self.friends.append(aFriend)

 self.numFriends = len(self.friends)

Add method

1-30

Example: SocialNetwork Object

contacts = new SocialNetwork(5);

After 3 friends are added it will look like this:

contacts

friendList

numFriends

3

P1

3 Person objects

P2 P3

Note that numFriends also acts as the index of the first free

spot in the array!

1-31

Review: Arrays

• An array has a particular number of

cells when it is created (its capacity)

• What happens when an array is full

and we try to store past the last

element in the array?

• An exception is thrown

• What happens then?

• We can instead automatically expand

the capacity of the array in our code!

1-32

/**

* expandCapacity method is a helper method

* that creates a new array to store friends, with twice

* the capacity of the existing one

*/

private void expandCapacity() {

 Person[] largerList = new Person[friendList.length * 2];

 for (int i = 0; i < friendList.length; i++)

 largerList [i] = friendList [i];

 friendList = largerList;

}

Note in Python we did not have to do this as lists can

grow dynamically

1-33

Review: Terminology

• Helper method

• Array length

• Scope of variables: what is the scope of

each of the following variables?

• friendList

• largerList

• i

1-34

/**

* toString method returns a string representation of all persons in the list

* @return string representation of list

*/

public String toString() {

 String s = "";

 for (int i = 0; i < this.numFriends; i++){

 s = s + friendList[i].toString() + "\n" ;

 }

 return s;

}

• What is "" ? "\n" ?

def __repr__(self):

 s = ""

 for element in self.friends:

 s = s + "\n" + element.getFriend()

 return s

toString

Java

Python

1-35

Java:

/**

* remove method removes a specified friend from the list

* @param firstName first name of person to be removed

* @param lastName last name of person to be removed

* @return true if friend was removed successfully, false otherwise

*/

public boolean remove (String firstName, String lastName) {

 final int NOT_FOUND = -1;

 int search = NOT_FOUND;

 Person target = new Person(firstName, lastName, "");

 // if list is empty, can't remove

 if (numFriends == 0)

 return false;
// search the list for the specified friend

 for (int i = 0; i < numFriends &&
 search == NOT_FOUND; i ++)

 if (friendList [i].equals(target))

 search = i;

remove method

Python:

def remove(self, first, last):
 i = -1
 for element in self.friends:
 if element.getFirstName() == first and element.getLastName() == last:
 i = self.friends.index(element)
 if i > -1:
 self.friends.pop(i)

 self.numFriends = len(self.friends)

 return True

 else:

 return False

// if not found, can't remove

if (search == NOT_FOUND)

 return false;

// target person found, remove by replacing with

// last one in list

 friendList[search] = friendList[numFriends - 1];

 friendList[numFriends - 1] = null;

 numFriends -- ;

 return true;

}

1-36

Example: SocialNetwork Object
Suppose the target person to be removed was the first one

(P1) ; after it is removed, we will have:

contacts

friendList

numFriends

2

P3 2 Person

objects
P2

1-37

Discussion

• The search in the remove method is

called a linear search

• It starts at the beginning and continues in a

sequential manner

• Why have we used a constant definition

here, and why is it -1?

 final int NOT_FOUND = -1;

• Where is the equals method of the line

 if (friendList [i].equals(target))

defined?

1-38

Discussion

• Why is it OK to replace the reference to

the found Person with the last one in the

list?

1-39

Exercises

• Write getNumFriends

• Write clearFriends

1-40

Example: Using the SocialNetwork Class

Java:

public class MyFriends {

 public static void main (String args[]) {

 SocialNetwork contacts = new SocialNetwork();

 contacts.add("Snoopy", "Dog", "snoopy@uwo.ca");

 contacts.add("Felix", "Cat", "felix@uwo.ca");

 contacts.add("Mickey", "Mouse", mickey@uwo.ca);

 System.out.println(contacts.toString());

 System.out.println("I have " + contacts.getNumFriends() +
 " friends in my contact list."); }

}

Python:

def main():
 from SocialNetwork import SocialNetwork
 from Person import Person

 contacts = SocialNetwork();
 contacts.add("Snoopy","Dog","snoopy@uwo.ca");
 contacts.add("Felix","Cat","felix@uwo.ca");
 contacts.add("Mickey","Mouse","mickey@uwo.ca");
 print(contacts)

 print(“I have “ , contacts.getNumFriends() , “ friends in my contact list”)

main()

1-41

Discussion

• Note that if we had

 System.out.println(contacts);

 then Java would automatically invoke
the toString method of the class that
contacts belongs to

• How many friends could you add to your
list of friends, in an application program
that uses our SocialNetwork class?

1-42

Exercise: Expand the SocialNetwork

Class

• The SocialNetwork class could use
some more methods in order to be
useful!

• A method that writes the list to a file

• A method that reads the list from a file

• A method that searches for a
particular friend in the list, and returns
the email address

• Others?

1-43

Review: Passing Parameters

• Why are methods written with parameter

lists?

• So that the methods can be more

general

• We can use methods with different

values passed in as parameters

1-44

Review: Passing Parameters

• How are parameters actually passed?

• The variable in the parameter list in the

method definition is known as a formal

parameter

• When we invoke a method with a

parameter, that is known as an actual

parameter

1-45

Passing Parameters: How it Works

 public class MyFriends {

 {

 public static void main(String[] args)

 { …

 contacts.add("Felix", "Cat",
 "felix@uwo.ca");

 ….

public class SocialNetwork {

 …

public void add (String firstName, String

 lastName, String email) {
 …

actual parameters

are provided by the calling

program when it invokes the

method

formal parameters

are part of the method definition

When the add method is executed, the value of each actual

parameter is passed by value to the corresponding formal

parameter variable

1-46

Aspects of Object-Oriented Design

• Modularity

• Information Hiding

• Encapsulation

1-47 1-47

• Modularity refers to subdividing a large

problem into smaller components, or

modules, to make the design of a

solution easier

• Modules should be as independent from

each other as possible

• Each module should perform one well-

defined task

Aspects of Program Design:

Modularity

1-48 1-48

Aspects of Program Design:

Information Hiding

• Information hiding refers to making
implementation details inaccessible

• To users of a program (they do not need to
know about implementation details)

• To other modules in a program (they cannot
see nor change the hidden details)

• Example: attributes (instance variables) in a
class definition are private

• What parts of a program can access
instance variables directly?

1-49 1-49

Aspects of OOP Design:

Encapsulation

• Object-oriented Design produces modular

solutions

• We identify the components involved within the

problem: the objects

• An object has data: characteristics (attributes)

• And behaviours (operations)

• Combining the data and the operations on the

data is called encapsulation

• They are combined in the class definition

