
Topic 4

Inheritance

3-2

Objectives

• To learn about the concept of

inheritance

• To understand how to inherit and

override methods from a superclass

• To learn about inheritance hierarchies

and the general superclass Object

• To learn about casting objects

• To learn about the instanceOf operator

3-3

Inheritance

• Inheritance: a mechanism for deriving a
new class from an existing one

• Motivation:

• Can reuse existing classes

• Faster and cheaper than writing them from
scratch

• Can organize classes in a hierarchical
manner

• e.g. can go from more general to more
specific classes

3-4

Example of a Class Hierarchy

 Vehicle

 Car Bus

SUV Smartcar Van Schoolbus LTCbus Greyhound

3-5

Example of a Class Hierarchy

 Shape

 2DShape 3DShape

Circle Rectangle Triangle Sphere Cube Tetrahedron

Square

3-6

Example of Inheritance

• Suppose we already have a class called

BankAccount

• There are specialized types of bank accounts,

such as savings accounts and checking

accounts

• So, we can write new classes called

SavingsAccount and CheckingAccount that

are derived from the BankAccount class (the

base class)

3-7

More Examples of Inheritance

Base class Derived Classes

Rectangle Square

Student UndergradStudent

 GradStudent

Loan CarLoan

 StudentLoan
 MortgageLoan

3-8

Inheritance Terminology

• The derived new class is called the
subclass

• Also called the child class or derived class

• It inherits the attributes and methods of
the superclass

• Also called the parent class or base class

• It can add new attributes or methods for
itself, i.e. it can extend the parent class

• In fact, the Java keyword to make a
subclass is extends

3-9

Java Example of Inheritance

/* Rectangle.java: a class that models a rectangle */

public class Rectangle {

 private int length;

 private int width;

 public Rectangle(int rLength, int rWidth) {

 length = rLength;

 width = rWidth;

 }

 public int getLength() {

 return length;

 } // cont’d..

3-10

 // ..cont’d..

 public int getWidth() {

 return width;

 }

 public int area() {

 return length*width;

 }

 public String toString() {

 return "Rectangle: " +

 "Length(" + length + ") " +

 "Width(" + width + ")";

 }

} // end of class Rectangle

3-11

/ * Square.java: a class that models a square */

public class Square extends Rectangle {

 // no new attributes need be introduced

 public Square(int s) {

 // calls the 2-variable superclass constructor

 super(s, s);

 }

 public int getSide() {

 return getWidth();

 }

 public String toString() {

 return "Square: Side(" + getSide() + ")";

 }

}

3-12

Inheriting Visibility

• public variables and methods: children can

access them directly (except the constructor)

• private variables and methods: children cannot

access them directly

• Why not? this would violate information hiding

• protected = may be accessed directly by any

class in the same package, or by any subclass

• So, children classes can access protected

variables and methods of parent class directly

3-13

The super Reference

• super is a reserved word used in a

derived class to refer to its parent class

• Allows us to access those members of the

parent class that are not inherited

• Invoking the parent’s constructor:

the first line of a child’s constructor

should be

 super(…);

3-14

Is-a Relationship

• The derived class is a more specific

version of the original class

• So, subclass object is of type subclass,

but also it is an instance of superclass

• Example: A Square object is a Rectangle

3-15

Discussion

• Why extend an existing class, i.e. why

not just change the existing class by

adding the new attributes and methods?

• Can you think of more examples of

classes we can model with an

inheritance relationship?

3-16

Example: BankAccount class

• Suppose we have a class BankAccount

with attributes

 private String accountNumber;

 private double balance;

 and public methods deposit, withdraw,

 printBalance, getBalance, toString

• What attributes and methods of the

BankAccount class can be accessed

directly by code in its subclasses?

3-17

• What new attributes might we have in

subclasses SavingsAccount and

CheckingAccount?

• Examples:

in SavingsAccount : interestRate

in CheckingAccount : transactionCount

Example: BankAccount class

3-18

Example: BankAccount constructor:

public BankAccount(double initialAmount,
 String accountNumber) {

 this.balance = initialAmount;
 this.accountNumber = accountNumber; }

CheckingAccount constructor:

public CheckingAccount(double initialAmount,

 String accountNumber) {

 super(initialAmount, accountNumber);

 transactionCount = 0; }

Example: BankAccount class

3-19

Example: BankAccount Class

• What new methods might we then have
in subclasses SavingsAccount and
CheckingAccount?

• In SavingsAccount:

• addInterest

• getInterestRate

• In CheckingAccount:

• deductFees

• different deposit – why?

• different withdraw – why?

3-20

Overriding Methods

• A derived class can define a method with

the same signature as a method in the

parent class

• The child’s method overrides the parent’s

method

• Example: methods deposit and withdraw in

CheckingAccount override deposit and

withdraw of BankAccount

• Example: method toString in Square overrides

toString of Rectangle

3-21

• Which method is actually executed at run
time?

• It depends on which object is used to invoke
the method

• Example:
Rectangle r = new Rectangle(4,5);
Square s = new Square(5);
System.out.println(r.toString());
System.out.println(s.toString());

• Note that a method defined with the final
modifier cannot be overridden

Overriding Methods

3-22

More on the super Reference

• Allows us to invoke a method of the parent class
that was overridden in the child class

• Example:
 public void deposit (double amount) {

 balance = balance + amount;

 }

 public void deposit (double amount) {

 transactionCount++;

 super.deposit (amount);

 }

 What would happen if we did not have the super
reference here?

Method deposit in

BankAccount

Method deposit in

CheckingAccount

3-23

Superclass Variables

• A variable of the superclass type may
reference an object of a subclass type

• Examples (see diagrams next page):

Square s = new Square(5);
Rectangle r = s;

Rectangle t = new Square(6);

• A variable of the subclass type may not
reference an object of the superclass type

• Why not?

3-24

Superclass Variables

Square s

Rectangle r

Rectangle t

5x5

6x16

Square object

Rectangle object Square s1

3-25

Type of an Object

• Note that the type of an object is

determined when it is created, and does

not change!

• Examples:

… = new Rectangle(2,5);

… = new BankAccount(45.65, “12345”);

• Notice that we are not talking about the

type of a variable here

3-26

Polymorphism
• Polymorphism: the principle that behaviour

can vary, depending on the type of the object

being manipulated

• With inheritance, a variable can refer to

objects of different types during its lifetime

• Example:

 Rectangle r;

 r = new Rectangle(2,5);

 System.out.println(r.toString());

 …

 r = new Square(2);

 System.out.println(r.toString());

What’s printed

depends on the

actual type of the

object (not the type

of the variable)

3-27

• When is it known which method should be
invoked? Not until run time!

• This is called dynamic binding or late
binding of the variable to the type of the
object

• Why is this not known at compile time?

 Example:
 if (…)

 r = new Rectangle(2,5);

else

 r = new Square(2);

System.out.println(r.toString());

Polymorphism

3-28

Dynamic (Late) Binding
• What happens when a superclass variable

references an object of a subclass type, and a
method is invoked on that object?

Example:
Rectangle r = new Square(5);

• The method must exist in the superclass (or
one of its ancestors) or there will be a compiler
error

Example:
System.out.println(r.getSide());

Not legal: r may not

always reference a

Square object

3-29

• If the method also exists in the subclass, the
method from the subclass is invoked (this is
overriding)

Example: what will be printed by
 System.out.println(r.toString());

• If the method does not exist in the subclass, the
method from the superclass is invoked

Example: is this legal?
System.out.println(r.getWidth());

Dynamic (Late) Binding

3-30

Casting Reference Variables

• Go back to the example:

 Rectangle r = new Square(5);

 System.out.println(r.getSide());

• This will generate a compiler error (why?)

• How could we fix it?

• We can let the compiler know that we intend

our variable r to reference a Square object,

by casting it to type Square

3-31

• Recall: we have used casting to convert one
primitive type to another

• Examples: why are we casting here?

int i, j, n;

n = (int) Math.random();
double q = (double) i / (double) j;

• Note that this actually changes the
representation from integer to double or vice
versa

Review: Casting Primitive Types

3-32

• We can also cast from one class type to

another within an inheritance hierarchy

• Fix our previous example by casting:
Rectangle r = new Square(5);

System.out.println(((Square) r).getSide());

• The compiler is now happy with our

intention that r references a Square object!

• We can think of this as doing a temporary

“type conversion” for the variable

Casting Reference Variables

3-33

Casting Reference Variables

• But, what if r did not reference a Square

object when casting took place?

Rectangle r = new Rectangle(2,5);

…

System.out.println(((Square) r).getSide());

• The compiler is happy, but we would get

a runtime error (why?)

3-34

InstanceOf Operator

A safer fix: use the instanceof operator

if (r instanceof Square)
 {
 System.out.println(((Square)r).getSide());

 }

• Note that instanceof is an operator, not a
method

• It tests whether the referenced object is an
instance of a particular class, and gives the
expression the value true or false

3-35

Class Hierarchies

• A derived class can be the parent of classes derived
from it

• A single parent class can have many child classes

• Siblings: children of the same parent

Snake Horse Bat

Animal

Lizard Parrot

Mammal Bird Reptile

3-36

Java’s Class Hierarchy

• A class called Object is at the top of the
class hierarchy so, by default, any class
extends Object

Error Savings

Account

Checking

Account

Object

Exception Square

BankAccount Rectangle Throwable Array

. . .

.

.

.

.

.

.

3-37

Java’s Class Hierarchy

• Some methods defined in the Object
class are:

• public boolean equals(Object obj);

• public String toString();

• So, will these methods exist in all
classes?

3-38

Object methods
• toString method: returns a string containing the

object’s class name followed by a unique numeric
value (the “hash code” of the object, or address
that says where it is stored)

• Example: Suppose we had not defined a toString
in the Person class. Then the code
 Person friend = new Person("Snoopy", "Dog", "");

 System.out.println(friend);

would print:

 Person@10b62c9

• Not very meaningful to us, so we usually override
this method in classes we write

3-39

• equals method: returns true if the two

object references refer to the same object

• Is this state equivalence or identity

equivalence?

• We often override this method in

classes we write, for example if we

want equality to mean that the objects

hold equal data

Object methods

3-40

Using the Object class

• A variable of type Object can reference an
object of any type! (why?)

• Example:
Object obj = new Rectangle(5,6);

• So, an array whose elements are of type
Object can store any type of object

• It can even store a mix of object types

• Example:
Object[] stuff = new Object[10];
stuff[0] = new Rectangle(5,6);
stuff[1] = new Integer(25);
…

3-41

• When an element of the array is obtained, it
can be cast to its particular (sub)class type,
for example:

System.out.println(((Rectangle)stuff[0]).area());

• We can create a general collection of
objects of type Object

Using the Object class

