Inheritance



Objectives

To learn about the concept of
inheritance

To understand how to inherit and
override methods from a superclass

To learn about inheritance hierarchies
and the general superclass Object

To learn about casting objects
To learn about the instanceOf operator

3-2



Inheritance
* Inheritance: a mechanism for deriving a
new class from an existing one
* Motivation:

» Can reuse existing classes

« Faster and cheaper than writing them from
scratch

3-3



Example of Inheritance

« Suppose we have a class called Rectangle that
IS to be used by a program that draws geometric
shapes on the screen.

« Each object of this class stores the height and length
of the rectangle that they represent.

* There are also getter methods, the constructor for the
class, a method to compute the area, and a method to
give a String representation of a rectangle.

3-4



Java Example of Inheritance

[* Rectangle.java: a class that represents a rectangle */

public class Rectangle {

private int length;

private int width;

public Rectangle(int rLength, int rWidth) {
length = rLength;
width = rWidth;

}

public int getLength( ) {

return length;

3-5



public int getWidth( ) {
return width;
}
public int area( ) {
return length*width;
}
public String toString( ) {
return "Rectangle: " +
"Length(" + length + ") " +
"Width(" + width + ")";

3-6



Derived Class Square

 We want to write a class that represents
squares. Squares are special rectangles for
which the length and width are the same.
Hence we want a square to also have some
of the methods of the class rectangle, like the
method to compute the area.

* We also want additional attributes and
methods specific to squares, like a method to
get the side of a square.

3-7



| * Square.java: class that represents a square */

public class Square extends Rectangle {
I/l Length of the diagonal
private double diagonal;

public Square(int side) {
/I calls the constructor of the superclass
super(side, side);
diagonal = (double) side * 1.4142;
}
public int getSide( ) {
return getWidth( );
}
public String toString( ) {
return "Square: Side(" + getSide( ) + ")";
}
}

3-8



public class Square extends Rectangle {
private double diagonal;
public Square(int side) {
super(side, side); // superclass constructor
diagonal = (double)side * 1.4142;

} CaS‘hv\ﬁ
public int getSide( ) {

return getWidth( );
}

public String toString( ) {
return "Square: Side(" + getSide( ) +")";
}

Methods and msfance vaxiabls will Ge
pont of am object of the class Sguarc

y

/* A class that models a rectangle *
public class Rectangle {

1

private int length;
private int width;

public Rectangle(int len, int w) {
length = len;
width = w;

}

public int getLength( ) {
return length;
}

public int getWidth( ) {
return width;

}

public int area( ) {
return length*width;
}

public String toString( ) {
return "Rectangle: Length(" + length "), Width(" + width -
}



Squa\’t 5= new Sguare (6)3 This will Greats in hMe¢ baovy

+he following 0bject

S—> dl'aﬂonaﬂ: 1.0%\
Square () ‘g

getSide() %’P\c(:om\as—l-u cade

to StingQ

length: 5
widéh: 5
/Reﬁ‘(xk\g\(, Rectanglel)

et dth()
get Lewgthy S Refwonces by code

aveal)

b stangl)

Objectof class Square



Inheritance Terminology

* The derived new class is called the
subclass, or the child class or the
derived class.

* It inherits the attributes and methods of
the superclass (also called the parent
class or base class)

* It can add new attributes or methods, i.e.

it can extend the parent class

« Tava keyword to make a subclass is
extends

3-9



Inheriting Visibility

* public variables and methods: children classes
can access them directly (excepft the
constructor)

» private variables and methods: children classes
cannot access them directly

« Why not? this would violate information hiding

* protected = may be accessed directly by any
class in the same package, or by any subclass

* S0, children classes can access protected
variables and methods of a parent class

3-10



public class Rectangle {

private int length;
private int width;

public Rectangle(int len,
int w) {
length = len;
width = w;
}

public int geWidth( ) {
return width;
}

public class Square extends Rectangle {
private double diagonal,
public Square(int side) {
super(side, side);
diagonal = (double)side * 1.4142;
}

public int getSide( ) { .
return width: «— T < +hw

} Jald @

public String toString( ) {

return "Square: Side(" + getSide( ) 4
Il)ll;
}

3-11



pubs Rectangle {
J

&

public Rectangle(int len,
int w) {

length = len;
width = w;

}

public int geWidth( ) {
return width;
}

ublic class Square extends Rectangle {

public String
return "Square:

)"
}

+ getSide( ) A

%9{0\ 13 i A

\N&d\'a 2

3-12



public class Rectangle {

protected int length;
protected int width;

public Rectangle(int len,
int w) {
length = len;
width = w;
}

public int geWidth( ) {
return width;
}

public class Square extends Rectangle {

private double diagonal,

public Square(int side) {
super(side, side);

diagonal = (double)side * 1.4142;

}

public int getSide( ) {
return width; &<~ T <
}

public String toString( ) {

Ao Va \AOW

return "Square: Side(" + getSide( ) 4
Il)ll;
f&}
}

3-13



The super Reference

* super is a reserved word used in a
derived class to refer to its parent class

 Allows us to access those members of the
parent class that are nof inherited

* Invoking the parent’s constructor.
the first line of a child’s constructor
should be

super(...);

3-11



public class Rectangle {

protected int length;
protected int width;

public Rectangle(int len,

intw) {
length = len;
width = w;
}

public String toStri
return "Rec
Length("+le
"), Width(" +

+ " ";

public class Square extends Rectangle {
private double diagonal;
public Square(int side) {
super(side, side);
diagonal = (double)side * 1.4142;
}

public String toStringAsRectangle( ) {

return toString(); .
} coch W\eﬂ“’d \S

+hw, ©
public String toString( ) { ’

return "Squ
+ " ll;

3-14

Sgquare

digonal:
SgvaveC)

toShing AsRectanglel)
o Sty o Q)

length:
width
Red’av\s\e(\
o Stang (3
gek Width()
get Length()

avea () \%

Methods e
Seavdhed W

e ovduv



public class Rectangle {

protected int length;
protected int width;

public Rectangle(int len,
int w) {

length = len;
width = w;

}

public String toString( ) {
return "Rectangle:
Length("+length+
"), Width(" + width

)

public class Square extends Rectangle {
private double diagonal,
public Square(int side) {
super(side, side);
diagonal = (double)side * 1.4142;

}

public String toStringAsRectangle( ) {

return super.toString();
} thich vs s

- thod ?
/W\a od

public String toString( ) {
return "Square: Side(" + getSide( )

+ )"

b

3-15



|s-a Relationship

* The derived class is a more specific
version of the original class

* S0, subclass object is of type subclass,
but also it is an instance of superclass

 Example:. A Square object is a Rectangle

3-12



Discussion

* Why extend an existing class, i.e. why
not just change the existing class by
adding the new attributes and methods?

» Can you think of more examples of
classes we can model with an
inheritance relationship?

3-13



Example: BankAccount class

* Suppose we have a class BankAccount
with attributes

private String accountNumber;
private double balance;

and public methods deposit, withdraw,
printBalance, getBalance, toString

 \What attributes and methods of the
BankAccount class can be accessed
directly by code in its subclasses?

3-14



Example: BankAccount class

* What new attributes might we have In
subclasses SavingsAccount and
CheckingAccount?
 Examples:

iIn SavingsAccount : interestRate
in CheckingAccount : transactionCount

3-15



Example: BankAccount class

Example: BankAccount constructor:

public BankAccount(double initialAmount,
String accountNumber) {

this.balance = initialAmount;
this.accountNumber = accountNumber; }

CheckingAccount constructor:

public CheckingAccount(double initialAmount,
String accountNumber) {
super(initialAmount, accountNumber);
transactionCount=0; }

3-16



Example: BankAccount Class

* What new methods might we then have
in subclasses SavingsAccount and
CheckingAccount?

* In SavingsAccount:
 addInterest
 getinterestRate

* |n CheckingAccount:
» deductFees
e deposit
» withdraw

3-17



Overriding Methods

* A derived class can define a method with
the same signature as a method in the
parent class

* The child’s method overrides the parent’'s
method

« Example: methods deposit and withdraw in
CheckingAccount override deposit and
withdraw of BankAccount

« Example: method toString in Square overrides
toString of Rectangle

3-18



Overriding Methods

* Which method is actually executed at run
time?
* |t depends on which object is used to invoke
the method

 Example:
Rectangle r = new Rectangle(4,5);
Square s = new Square(5);
System.out.printin(r.toString( ));
System.out.printin(s.toString( ));

 Note that a method defined with the final
modifier cannot be overridden

3-19



More on the super Reference

« Allows us to invoke a method of the parent class
that was overridden in the child class

« Example:
public void deposit (double amount) { —
balance = balance + amount; Method deposit in
} BankAccount

public void deposit (double amount) { —
transactionCount++; Method deposit in

super.deposit (amount); CheckingAccount

}

What would happen if we did not have the super
reference here?

3-20



Superclass Variables

* A variable of the superclass type may
reference an object of a subclass type

« Examples (see diagrams next page):
Square s = new Square(d);
Rectangle r = s;

Rectangle t = new Square(6);

* A variable of the subclass type may not
reference an object of the superclass type

* Why not?

3-21



Superclass Variables

Square object

5x5

Square s

Rectangle r

Square s1 | Mectangle object

Rectangle t I i >| 6x16

3-22



Type of an Object

* Note that the type of an object is
determined when it is created, and does
not change

* Examples:

... = new Rectangle(2,5);
... = new BankAccount(45.65, “12345");

* Notice that we are not talking about the
type of a variable here

3-23



 Consider the statement

Rectangle r = new Square(5);

is the following statement legal?

int i = r.getSide( );

3-23



 Consider the statement

Rectangle r = new Square(5);

is the following statement legal?

inti=r.getSide(); |Notlegal: class
Rectangle does not

have method
getSide().

This is an example of
a compilation error




Polymorphism

* Polymorphism: the principle that behavior of a
method can vary, depending on the fype of the
object being referenced

 With inheritance, a variable can refer to
objects of different types during its lifetime

« Example:
Rectangle r;
r = new Rectangle(2,5); What'’s printed

System.out.printin(r.toString( )); depends on the
actual type of the
object (not the type
of the variable)

r = new Square(2);
System.out.printin(r.toString( ));

3-24



Polymorphism

« When is it known which method should be
iInvoked? Nof until run time!

* This is called dynamic binding or late
binding of the variable to the type of the
object

* Why is this not known at compile time?

Example:
if(...)
r = new Rectangle(2,5);
else
r = new Square(2);
System.out.printin(r.toString( ));

3-25



Dynamic (Late) Binding

 What happens when a superclass variable
references an object of a subclass type, and a
method is invoked on that object?

Example:
Rectangle r = new Square(5);

* The method must exist in the superclass (or
one of its ancestors) or there will be a compiler
error

Examp/e; Not legal: r may not
always reference a

System.out.printin(r.getSide( )); |square object

3-26



Dynamic (Late) Binding

* |f the method also exists in the subclass, the
method from the subclass is invoked (this is
overriding)

Example: what will be printed by
System.out.printin(r.toString( ));

* |f the method does not exist in the subclass, the
method from the superclass is invoked

Example: is this legal?
System.out.printin(r.getWidth( ));

3-27



Casting Reference Variables

* (Go back to the example:

Rectangle r = new Square(5);
System.out.printin( r.getSide( ) );

« This will generate a compiler error (why?)
* How could we fix it?

 We can let the compiler know that we intend
our variable r to reference a Square object,
by casting it to type Square

3-28



Review: Casting Primitive Types

* Recall: we have used casting to convert one
primitive type to another

- Examples: why are we casting here?
inti, |, n;
n = (int) Math.random( );
double q = (double) i / (double) ;

* Note that this actually changes the
representation from integer to double or vice

Versa

3-29



Casting Reference Variables

* We can also cast from one class type to
another within an inheritance hierarchy

* Fix our previous example by casting:
Rectangle r = new Square(5);
System.out.printin(( (Square) r).getSide( ));

 The compileris now happy with our
intention that r references a Square object!

« Casting does not change the object being
referenced

3-30



Casting Reference Variables

Rectangle r = new Square(5);
inti= r.getSide();

« To fix the error we can cast r to type Square:

Rectangle r = new Square(9)
inti = ((Square) r).getSide( ))

Casting does not convert an object to a different
type.

3-27



Casting Reference Variables

« But, what if r did not reference a Square
object when casting took place?

Rectangle r = new Rectangle(2,5);

System.out.printin(( (Square) r).getSide( ));

« The compiler is happy, but we would get
a runtime error (why?)

3-31



InstanceOf Operator

A safer fix: use the instanceof operator

if (r instanceof Square)

{
System.out.printIn(((Square)r).getSide( ));

}

* Note that instanceof is an operator, not a
method

* |t tests whether the referenced object is an
iInstance of a particular class, and gives the

expression the value true or false
3-32



Tohexr dance

Class A wethods

and fnstme  K— C\

vavialbles

as S A& /\)0\%6\(\% of base C\aSS

|

oY subc\asj

g Class B child c\ass

and (stace
vax ables /

Class A wethods
and tashamer
Vaxiables




Class A wethods
and tnstane
Vaxiab les

Class® methods
and (stoace
vaxables

Class A wethods
and tashamee
Naxiab les

Trhey Fance

Class A

Cless C wethods
and instonce
vax\ab\es

Class® methods
ond (stoace
vax ables

Class A wethods
and tastane
NA&Y\& Gles

7

\O\SS B /P(}\\ge\(\‘t of bgse class

Class C

child class o sub

s S



* A derived class can be the parent of several classes

Class Hierarchies

derived from it

* A single parent class can have many child classes

« Siblings: children of the same parent

Animal
Reptile Bird Mammal
Snake Lizard Parrot Horse Bat

3-33



Java’'s Class Hierarchy

* A class called Object is at the top of the
class hierarchy so, by default, any class
extends Object

Object
Array Throwable Rectangle BankAccount
Error Exception || Square Savings Checking

Account Account

3-34



Java's Class Hierarchy

 Some methods defined in the Object
class are:

* public boolean equals(Object obj);
» public String toString( );

e S0, will these methods exist in all
classes?

3-35



Object methods

+ toString method: returns a string containing the
object’s class name followed by a unique numeric
value (the “hash code” of the object, or address
that says where it is stored)

» Example: Suppose we had not defined a toString
In the Person class. Then the code
Person friend = new Person("Snoopy", "Dog", "");

System.out.printin(friend);
would print:
Person@10b62c9

* Not very meaningful to us, so we usually override
this method in the classes we write.

3-36



Object methods

* equals method: returns true if the two
object references refer to the same object

* Does this compares object addresses
or their content?

* We often override this method in
classes we write, for example if we
want equality to mean that the objects
hold equal data

3-37



Using the Object class

* A variable of type Object can reference an
object of any type! (why?)
« Example:

Object obj = new Rectangle(5,6);

* S0, an array whose elements are of type
Object can store any type of object

* It can even store a mix of object types
 Example:

Object
stuff[O]

] stuff = new ObJeCt[1 O],
= new Rectangle(5,6);

Stuff[1

= new Integer(25);

3-38



Using the Object class

* When an element of the array is obtained, it
can be cast to its particular (sub)class type,
for example:

System.out.printin(( (Rectangle)stuff[0] ).area( ));

* We can create a general collection of
objects of type Object

3-39



