
Inheritance

3-2

Objectives

� To learn about the concept of
inheritance

� To understand how to inherit and
override methods from a superclass

� To learn about inheritance hierarchies
and the general superclass Object

� To learn about casting objects
� To learn about the instanceOf operator

3-3

Inheritance
� Inheritance: a mechanism for deriving a

new class from an existing one
� Motivation:
� Can reuse existing classes

� Faster and cheaper than writing them from
scratch

3-4

Example of Inheritance

� Suppose we have a class called Rectangle that
is to be used by a program that draws geometric
shapes on the screen.
� Each object of this class stores the height and length

of the rectangle that they represent.
� There are also getter methods, the constructor for the

class, a method to compute the area, and a method to
give a String representation of a rectangle.

3-5

Java Example of Inheritance
/* Rectangle.java: a class that represents a rectangle */

public class Rectangle {
private int length;
private int width;
public Rectangle(int rLength, int rWidth) {

length = rLength;
width = rWidth;

}
public int getLength() {

return length;
}

3-6

public int getWidth() {
return width;

}
public int area() {

return length*width;
}
public String toString() {

return "Rectangle: " +
"Length(" + length + ") " +
"Width(" + width + ")";

}
}

� We want to write a class that represents
squares. Squares are special rectangles for
which the length and width are the same.
Hence we want a square to also have some
of the methods of the class rectangle, like the
method to compute the area.

� We also want additional attributes and
methods specific to squares, like a method to
get the side of a square.

3-7

Derived Class Square

3-8

/ * Square.java: class that represents a square */

public class Square extends Rectangle {
// Length of the diagonal
private double diagonal;

public Square(int side) {
// calls the constructor of the superclass
super(side, side);
diagonal = (double) side * 1.4142;

}
public int getSide() {

return getWidth();
}
public String toString() {

return "Square: Side(" + getSide() + ")";
}

}

Methods and instance variables will be

part of an object of the class Square

casting

Square s -

- new Square c s) ;
This will create in memory

the following object

S → diagonal : 5

Square y
get sided } -4 References to code

to stringed

length : s

width : 5

Rectangle{ thggeeftfienftgf.LI

,) - References to code

areal)
to stringy

Object of class Square

7. 071

3-9

Inheritance Terminology
� The derived new class is called the

subclass, or the child class or the
derived class.

� It inherits the attributes and methods of
the superclass (also called the parent
class or base class)

� It can add new attributes or methods, i.e.
it can extend the parent class
� Tava keyword to make a subclass is
extends

3-10

Inheriting Visibility

� public variables and methods: children classes
can access them directly (except the
constructor)

� private variables and methods: children classes
cannot access them directly
� Why not? this would violate information hiding

� protected = may be accessed directly by any
class in the same package, or by any subclass
� So, children classes can access protected

variables and methods of a parent class

3-11

public class Rectangle {
private int length;
private int width;

public Rectangle(int len,
int w) {

length = len;
width = w;

}
public int geWidth() {

return width;
}

public class Square extends Rectangle {
private double diagonal;
public Square(int side) {

super(side, side);
diagonal = (double)side * 1.4142;

}

public int getSide() {
return width;

}

public String toString() {
return "Square: Side(" + getSide() +

")";
}

}

| ← ± sutah.gg ?

AI

3-12

public class Rectangle {
public int length;
public int width;

public Rectangle(int len,
int w) {

length = len;
width = w;

}
public int geWidth() {

return width;
}

public class Square extends Rectangle {
private double diagonal;
public Square(int side) {

super(side, side);
diagonal = (double)side * 1.4142;

}

public int getSide() {
return width;

}

public String toString() {
return "Square: Side(" + getSide() +

")";
}

}

0¥:¥÷÷::
.

programming
AT practice ?

3-13

public class Rectangle {
protected int length;
protected int width;

public Rectangle(int len,
int w) {

length = len;
width = w;

}
public int geWidth() {

return width;
}

public class Square extends Rectangle {
private double diagonal;
public Square(int side) {

super(side, side);
diagonal = (double)side * 1.4142;

}

public int getSide() {
return width;

}

public String toString() {
return "Square: Side(" + getSide() +

")";
}

}

| ← Is this valid ?

AI

3-11

The super Reference

• super is a reserved word used in a
derived class to refer to its parent class

• Allows us to access those members of the
parent class that are not inherited
• Invoking the parent’s constructor:

the first line of a child’s constructor
should be
super(…);

-

Square

diagonal :

Square C I
to string As Rectangles
to

stringy

.

ength :

width :I '

Thich method; 's ' I:E÷÷'s:& ,

/
get Length

-

µ
areas ,

Methods aref III: "

3-15

public class Rectangle {
protected int length;
protected int width;

public Rectangle(int len,
int w) {

length = len;
width = w;

}

public String toString() {
return "Rectangle:
Length("+length+
"), Width(" + width
+ ")";

}

public class Square extends Rectangle {
private double diagonal;
public Square(int side) {

super(side, side);
diagonal = (double)side * 1.4142;

}

public String toStringAsRectangle() {
return super.toString();

}

public String toString() {
return "Square: Side(" + getSide()

+ ")";
}

}

.ms
.

3-12

Is-a Relationship

• The derived class is a more specific
version of the original class

• So, subclass object is of type subclass,
but also it is an instance of superclass
• Example: A Square object is a Rectangle

3-13

Discussion

• Why extend an existing class, i.e. why
not just change the existing class by
adding the new attributes and methods?

• Can you think of more examples of
classes we can model with an
inheritance relationship?

3-14

Example: BankAccount class

• Suppose we have a class BankAccount
with attributes

private String accountNumber;
private double balance;

and public methods deposit, withdraw,
printBalance, getBalance, toString

• What attributes and methods of the
BankAccount class can be accessed
directly by code in its subclasses?

3-15

• What new attributes might we have in
subclasses SavingsAccount and
CheckingAccount?
• Examples:

in SavingsAccount : interestRate
in CheckingAccount : transactionCount

Example: BankAccount class

3-16

Example: BankAccount constructor:

public BankAccount(double initialAmount,
String accountNumber) {

this.balance = initialAmount;
this.accountNumber = accountNumber; }

CheckingAccount constructor:

public CheckingAccount(double initialAmount,
String accountNumber) {

super(initialAmount, accountNumber);
transactionCount = 0; }

Example: BankAccount class

3-17

Example: BankAccount Class

• What new methods might we then have
in subclasses SavingsAccount and
CheckingAccount?
• In SavingsAccount:

• addInterest
• getInterestRate

• In CheckingAccount:
• deductFees
• deposit
• withdraw

3-18

Overriding Methods
• A derived class can define a method with

the same signature as a method in the
parent class
• The child’s method overrides the parent’s

method
• Example: methods deposit and withdraw in

CheckingAccount override deposit and
withdraw of BankAccount

• Example: method toString in Square overrides
toString of Rectangle

3-19

• Which method is actually executed at run
time?
• It depends on which object is used to invoke

the method
• Example:

Rectangle r = new Rectangle(4,5);
Square s = new Square(5);
System.out.println(r.toString());
System.out.println(s.toString());

• Note that a method defined with the final
modifier cannot be overridden

Overriding Methods

3-20

More on the super Reference
• Allows us to invoke a method of the parent class

that was overridden in the child class
• Example:

public void deposit (double amount) {
balance = balance + amount;

}

public void deposit (double amount) {
transactionCount++;
super.deposit (amount);

}

What would happen if we did not have the super
reference here?

Method deposit in
BankAccount

Method deposit in
CheckingAccount

3-21

Superclass Variables
• A variable of the superclass type may

reference an object of a subclass type
• Examples (see diagrams next page):

Square s = new Square(5);
Rectangle r = s;

Rectangle t = new Square(6);

• A variable of the subclass type may not
reference an object of the superclass type
• Why not?

3-22

Superclass Variables

Square s

Rectangle r

Rectangle t

5x5

6x16

Square object

Rectangle objectSquare s1

3-23

Type of an Object

• Note that the type of an object is
determined when it is created, and does
not change

• Examples:
… = new Rectangle(2,5);
… = new BankAccount(45.65, “12345”);

• Notice that we are not talking about the
type of a variable here

3-23

� Consider the statement

Rectangle r = new Square(5);

is the following statement legal?

int i = r.getSide();

3-24

� Consider the statement

Rectangle r = new Square(5);

is the following statement legal?

int i = r.getSide(); Not legal: class
Rectangle does not
have method
getSide().

This is an example of
a compilation error

3-24

Polymorphism
• Polymorphism: the principle that behavior of a

method can vary, depending on the type of the
object being referenced
• With inheritance, a variable can refer to

objects of different types during its lifetime
• Example:

Rectangle r;
r = new Rectangle(2,5);
System.out.println(r.toString());
…
r = new Square(2);
System.out.println(r.toString());

What’s printed
depends on the
actual type of the
object (not the type
of the variable)

3-25

• When is it known which method should be
invoked? Not until run time!
• This is called dynamic binding or late

binding of the variable to the type of the
object

• Why is this not known at compile time?
Example:
if (…)

r = new Rectangle(2,5);
else

r = new Square(2);
System.out.println(r.toString());

Polymorphism

3-26

Dynamic (Late) Binding
• What happens when a superclass variable

references an object of a subclass type, and a
method is invoked on that object?

Example:
Rectangle r = new Square(5);

• The method must exist in the superclass (or
one of its ancestors) or there will be a compiler
error

Example:
System.out.println(r.getSide());

Not legal: r may not
always reference a
Square object

3-27

• If the method also exists in the subclass, the
method from the subclass is invoked (this is
overriding)

Example: what will be printed by
System.out.println(r.toString());

• If the method does not exist in the subclass, the
method from the superclass is invoked

Example: is this legal?
System.out.println(r.getWidth());

Dynamic (Late) Binding

3-28

Casting Reference Variables
• Go back to the example:

Rectangle r = new Square(5);
System.out.println(r.getSide());

• This will generate a compiler error (why?)
• How could we fix it?

• We can let the compiler know that we intend
our variable r to reference a Square object,
by casting it to type Square

3-29

• Recall: we have used casting to convert one
primitive type to another
• Examples: why are we casting here?

int i, j, n;

n = (int) Math.random();
double q = (double) i / (double) j;

• Note that this actually changes the
representation from integer to double or vice
versa

Review: Casting Primitive Types

3-30

• We can also cast from one class type to
another within an inheritance hierarchy

• Fix our previous example by casting:
Rectangle r = new Square(5);
System.out.println(((Square) r).getSide());

• The compiler is now happy with our
intention that r references a Square object!

• Casting does not change the object being
referenced

Casting Reference Variables

3-27

Casting Reference Variables
Rectangle r = new Square(5);
int i = r.getSide();

� To fix the error we can cast r to type Square:

Rectangle r = new Square(5);
int i = ((Square) r).getSide());

Casting does not convert an object to a different
type.

3-31

Casting Reference Variables

� But, what if r did not reference a Square
object when casting took place?

Rectangle r = new Rectangle(2,5);
«
System.out.println(((Square) r).getSide());

� The compiler is happy, but we would get
a runtime error (why?)

3-32

InstanceOf Operator
A safer fix: use the instanceof operator

if (r instanceof Square)
{
System.out.println(((Square)r).getSide());

}

� Note that instanceof is an operator, not a
method

� It tests whether the referenced object is an
instance of a particular class, and gives the
expression the value true or false

Inheritance

class A methods parent or base class
and instance f. Class A

variables

µ I

In:&.IE?ns:tehods%1assBchild class or subclass

<
Class A methods

and instance

variables

Inheritance

Class A methods \ X
and instance ←

Class A
varia 6-les

c

:÷÷÷÷:
I

÷÷÷÷÷÷t:
ass B Parent or base class

I:&:III:
") Class C child class or subclass

Class B methods \

a ::¥÷ .

I
Class A methods

and instance

varia 6-les

3-33

Class Hierarchies
• A derived class can be the parent of several classes

derived from it
• A single parent class can have many child classes
• Siblings: children of the same parent

Snake Horse Bat

Animal

Lizard Parrot

MammalBirdReptile

3-34

Java’s Class Hierarchy
• A class called Object is at the top of the

class hierarchy so, by default, any class
extends Object

Error Savings
Account

Checking
Account

Object

Exception Square

BankAccountRectangleThrowableArray

. . .

.

.

.

.

.

.

3-35

Java’s Class Hierarchy

• Some methods defined in the Object
class are:
• public boolean equals(Object obj);
• public String toString();

• So, will these methods exist in all
classes?

3-36

Object methods
• toString method: returns a string containing the

object’s class name followed by a unique numeric
value (the “hash code” of the object, or address
that says where it is stored)

• Example: Suppose we had not defined a toString
in the Person class. Then the code

Person friend = new Person("Snoopy", "Dog", "");
System.out.println(friend);

would print:
Person@10b62c9

• Not very meaningful to us, so we usually override
this method in the classes we write.

3-37

• equals method: returns true if the two
object references refer to the same object
• Does this compares object addresses

or their content?
• We often override this method in

classes we write, for example if we
want equality to mean that the objects
hold equal data

Object methods

3-38

Using the Object class
• A variable of type Object can reference an

object of any type! (why?)
• Example:

Object obj = new Rectangle(5,6);
• So, an array whose elements are of type

Object can store any type of object
• It can even store a mix of object types

• Example:
Object[] stuff = new Object[10];
stuff[0] = new Rectangle(5,6);
stuff[1] = new Integer(25);
«

3-39

• When an element of the array is obtained, it
can be cast to its particular (sub)class type,
for example:

System.out.println(((Rectangle)stuff[0]).area());

• We can create a general collection of
objects of type Object

Using the Object class

