
Topic 13

Iterators

9-2

Motivation
• We often want to access every item in a

data structure or collection in turn
• We call this traversing or iterating over or

stepping through or visiting every item in
the data structure or collection

• Example with a data structure (array):
for (int i = 0; i < arr.length(); i++)

/* do something to arr[i] */

• This is straighforward because we know
exactly how an array works!

9-3

Motivation

• What if we want to traverse a collection
of objects?
• A list, a stack, a queue …

• Its underlying implementation may not be
known to us

• Java provides a common scheme for
stepping through all elements in any
collection, called an iterator

9-42-4

What is an Iterator?

• An iterator is a mechanism used to step
through the elements of a collection one
by one
• Each element is “delivered ” exactly once

• Example
• Iterate through an ordered list and print each

element in turn

5 9 23 34

9-52-5

Iterator Interface

• The Java API has a generic interface called
Iterator<T> that specifies what methods are
required of an iterator
• public boolean hasNext();

returns true if there are more elements in the
iteration

• public T next();
returns the next element in the iteration

• public void remove();
removes the last element returned by the iterator
(optional operation)

• It is in the java.util package of the Java API

9-6

Array Iterator
• If we had a collection with an array

implementation, we would need an array
implementation of the Iterator interface
• See ArrayIterator.java :

• Its attributes
• Its constructor
• The code for the methods hasNext and

next
• In what order does it deliver the items?

• Note: ArrayIterator.java can be used by an array
implementation of any collection!

9-72-7

// Represents an iterator over the elements of an ar ray

import java.util.*;

public class ArrayIterator<T> implements Iterator<T> {

// Attributes
private int count; // number of elements in collection
private int current; // current position in the iteration
private T[] items; // items in the collection

// Constructor: sets up this iterator using the
// specified items
public ArrayIterator (T[] collection, int size) {

items = collection;
count = size;
current = 0;

}
// cont’d..

ArrayIterator.java

9-82-8

// cont’d..
// Returns true if this iterator has at least one
// more element to deliver in the iteration
public boolean hasNext() {

return (current < count);
}

// Returns the next element in the iteration.
// If there are no more elements in this iteration,
// throws an exception.
public T next() {

if (! hasNext())
throw new NoSuchElementException();

current++;
return items[current - 1];

}
} ArrayIterator.java (cont’d)

9-9

Linked Iterator
• If we had a collection with a linked

implementation, we would need a linked
implementation of the Iterator interface
• See LinkedIterator.java

• Its attributes
• Its constructor
• The code for the methods hasNext and

next
• In what order does it deliver the items?

• Note: LinkedIterator.java can be used by a linked
implementation of any collection!

9-10

import java.util.*;
public class LinkedIterator<T> implements Iterator<T> {

// Attributes
private int count; // number of elements in collection
private LinearNode<T> current; // current position

// Constructor: Sets up this iterator using the spe cified items
public LinkedIterator (LinearNode<T> collection, int size){

current = collection;
count = size;

} //cont’d..

LinkedIterator.java

9-11

// ..cont’d..
// Returns true if this iterator has at least one m ore element
// to deliver in the iteration.
public boolean hasNext() {

return (current!= null);
}
// Returns the next element in the iteration. If t here are no
// more elements in this iteration, throws an exce ption.
public T next() {

if (! hasNext())
throw new NoSuchElementException();

T result = current.getElement();
current = current.getNext();
return result;

}
}

LinkedIterator.java
(cont’d)

9-12

Iterators for a Collection

So how do we set up an iterator for a collection?
• Recall that the ListADT interface has an

operation called iterator :

// Returns an iterator for the elements in this list
public Iterator<T> iterator();

• (In fact, any of our collections could have had an
iterator operation … later)

9-13

The iterator Operation in the ListADT

• Note that the return type of the iterator
operation is Iterator<T>
• But Iterator<T> is an interface, not a class!
• When the return type of a method is an

interface name, the method actually returns an
object from a class that implements the
interface
• The iterator operation in ArrayList will use

the class ArrayIterator
• The iterator operation in LinkedList will use

the class LinkedIterator

9-142-14

/**
* Returns an iterator for the elements currently in this list.
*
* @return an iterator for the elements in this list
*/

public Iterator<T> iterator()
{

return new ArrayIterator<T> (list, rear);
}

iterator method for ArrayList

9-15

/**
* Returns an iterator for the elements currently in this list.
*
* @return an iterator for the elements in this list
*/
public Iterator<T> iterator()
{

return new LinkedIterator <T> (contents, count);
}

The only difference from the iterator method in
ArrayList is the class from which the iterator
object is being created!

iterator method for LinkedList

9-16

Using an Iterator

• When the iterator() method in a
collection is invoked, it returns an
“iterator object”

• We can then invoke the methods
hasNext() and next() on that object, to
iterate through the collection

• (Those are the methods that are
specified in the Iterator<T> interface)

9-17

Using an Iterator in an Application
Example: Suppose we had an unordered list that was

created by
ArrayUnorderedList<Person> myList =

new ArrayUnorderedList<Person>();
and then had items added to it…

// Use iterator to display contents of list
Iterator<Person> iter = myList.iterator();
while(iter.hasNext())
{

System.out.println(iter.next());
}

// cont’d

9-18

Using an Iterator in an Application

// Print just the email addresses now

// Note that we have to start a new iteration!

iter = myList.iterator(); // start new iteration
while(iter.hasNext())
{

System.out.println(iter.next().getEmail());
}

9-192-19

Example: Using an Iterator within
a Class Definition

• Rewrite the toString() method of ArrayList using
its iterator:

public String toString() {
String result = “”;

Iterator<T> iter = this.iterator();

while (iter.hasNext())
result = result + iter.next().toString() + “\n”;

return result;
}

9-20

Discussion

• Could we use the very same code from
the previous slide for the toString()
method of LinkedList?

• If we had an iterator operation in the
StackADT, could we use this very same
code for the toString() methods of the
StackADT implementations?

9-21

Exercises

• Add an iterator operation to the StackADT
• Implement it in ArrayStack

• In what order will it deliver the items if we use
ArrayIterator.java to implement the Iterator<T>
interface?

• Implement it in LinkedStack
• In what order will it deliver the items if we use

LinkedIterator.java to implement the Iterator<T>
interface?

• Rewrite the toString method of the StackADT
implementations to use its iterator

• Ditto for the QueueADT

9-22

Discussion

• Note that the order of the iteration is
determined by the design of the class that
implements the Iterator<T> interface

• If we wanted an iterator that delivered the
items in a stack in the opposite order from
ArrayIterator, what would we have to do?

9-232-23

Why use Iterators?
• Traversing through the elements of a

collection is very common in programming,
and iterators provide a uniform way of doing
so

• Advantage? Using an iterator, we don’t need
to know how the collection is implemented!

