Topic 13

Iterators

Motivation

« \We often want to access every item in a
data structure or collection in turn
 We call this traversing or iterating over or
stepping through or visiting every item in
the data structure or collection
 Example with a data structure (array):
for (inti=0; i < arr.length(); i++)
[* do something to arr[i] */

e This is straighforward because we know
exactly how an array works!

9-2

Motivation

 What if we want to traverse a collection
of objects?
e Alist, a stack, a queue ...
e |ts underlying implementation may not be
known to us
e Java provides a common scheme for

stepping through all elements in any
collection, called an iterator

9-3

What Is an lterator?

* An iterator Is a mechanism used to step

through the elements of a collection one
by one

 Each element is “delivered " exactly once
 Example

e |terate through an ordered list and print each
element in turn

9-4

lterator Interface

 The Java API has a generic interface called
lterator<T> that specifies what methods are
required of an iterator

 public boolean hasNext();

returns true If there are more elements in the
Iteration

e public T next();
returns the next element in the iteration

* public void remove();
removes the last element returned by the iterator
(optional operation)

* |tisin the java.util package of the Java API

9-5

Array lterator

 |f we had a collection with an array
Implementation, we would need an array
Implementation of the Iterator interface

e See Arraylterator.java
e |[ts attributes
e |[ts constructor

 The code for the methods hasNext and
next

e |[n what order does it deliver the items?

 Note: Arraylterator.java can be used by an array
Implementation of any collection!

9-6

I/l Represents an iterator over the elements of anar ray
Import java.util.*;
public class Arraylterator<T> implements Iterator<T> {

I/ Attributes
private int count; // number of elements in collection

private int current; // current position in the iteration
private T[] items; // items in the collection

// Constructor: sets up this iterator using the
I/ specified items

public Arraylterator (T[| collection, int size) {
items = collection;

t = size; .
current = 0; Arraylterator.java
)
/I cont’d.. 0.7

/I cont’d..

/I Returns true if this iterator has at least one
/l more element to deliver in the iteration

public boolean hasNext() {
return (current < count);

}

/| Returns the next element in the iteration.
/I If there are no more elements in this iteration,
/[throws an exception.

public T next() {
If (! hasNext())
throw new NoSuchElementException();
current++;
return itemsf[current - 1];

}

Arraylterator.java (cont’d)

2-8

Linked lterator

 |f we had a collection with a linked
Implementation, we would need a linked
Implementation of the Iterator Iinterface

e See Linkedlterator.java
e |[ts attributes
e Its constructor

e The code for the methods hasNext and
next

e |[n what order does it deliver the items?

 Note: Linkedlterator.java can be used by a linked
Implementation of any collection!

9-9

Import java.util.*;
public class Linkedlterator<T> implements lterator<T> {

// Attributes
private int count; // number of elements in collection

private LinearNode<T> current; // current position

/I Constructor: Sets up this iterator using the spe cified items
public Linkedlterator (LinearNode<T> collection, int size){

current = collection; . .
e, LinkedIterator.java
1} /lcont'd.. |

9-10

/[..cont'd..
/[Returns true If this iterator has at least one m
/[to deliver in the iteration.
public boolean hasNext() {

return (current!= null);
}
/[Returns the next element in the iteration. If t
/[more elements In this iteration, throws an exce
public T next() {

If (! hasNext())

throw new NoSuchElementException();
T result = current.getElement();

ore element

here are no
ption.

current = current.getNext();

ST GRS LinkedIterator.java

} (cont’d)

9-11

lterators for a Collection

So how do we set up an iterator for a collection?

e Recall that the LIstADT interface has an
operation called iterator :

/| Returns an iterator for the elements in this list
public Iterator<T> iterator();

* (In fact, any of our collections could have had an
iterator operation ... later)

9-12

The iterator Operation in the LIStADT

* Note that the return type of the iterator
operation Is lterator<T>

e But Iterator<T> Is an interface, not a class!

 When the return type of a method is an
Interface name, the method actually returns an
object from a class that implements the
Interface

e The iterator operation in ArrayList will use
the class Arraylterator

e The iterator operation in LinkedList will use
the class Linkedlterator

9-13

iterator method for ArrayList

/**

* Returns an iterator for the elements currently in

*

* @return an iterator for the elements in this list

*/

public lterator<T> iterator()

{
}

return new Arraylterator<T> (list, rear);

this list.

2-14

iterator method for LinkedList

/**

* Returns an iterator for the elements currently in this list.

*

* @return an iterator for the elements in this list
*/
public lterator<T> iterator()

{

return new Linkedlterator <T> (contents, count);

}

The only difference from the iterator method in
ArrayList is the class from which the iterator
object is being created!

9-15

Using an lterator

 When the iterator() method in a
collection is invoked, It returns an
“Iterator object”

e \WWe can then invoke the methods

hasNext() and next() on that object, to
iterate through the collection

* (Those are the methods that are
specified In the Iterator<T> Interface)

9-16

Using an Iterator in an Application

Example: Suppose we had an unordered list that was
created by
ArrayUnorderedList<Person> myList =

new ArrayUnorderedList<Person>();
and then had items added to it...

/[Use Iiterator to display contents of list
Iterator<Person> iter = myList.iterator();
while(iter.nasNext())

{
}

System.out.printin(iter.next());

/l cont'd

9-17

Using an Iterator in an Application

// Print just the emall addresses now
// Note that we have to start a new Iteration!

iter = myList.iterator(); // start new iteration
while(iter.nasNext())

{
System.out.printin(iter.next().getEmail());
}

9-18

Example: Using an Iterator within
a Class Definition

 Rewrite the toString() method of ArrayList using
Its iterator:

public String toString() {
String result = *”;

lterator<T> iter = this.iterator();

while (iter.hasNext())
result = result + iter.next().toString() + “\n”;

return result;

2-19

Discussion

e Could we use the very same code from
the previous slide for the toString()
method of LinkedList?

 If we had an iterator operation in the
StackADT, could we use this very same
code for the toString() methods of the
StackADT implementations?

9-20

Exercises

e Add an iterator operation to the StackADT
e Implement it in ArrayStack

e In what order will it deliver the items If we use
Arraylterator.java to implement the Iterator<T>
Interface?

e Implement it in LinkedStack

 In what order will it deliver the items if we use
LinkedIterator.java to implement the Iterator<T>
interface?

* Rewrite the toString method of the StackADT
Implementations to use its iterator

e Ditto for the QueueADT

9-21

Discussion

* Note that the order of the iteration Is
determined by the design of the class that
Implements the Iterator<T> Interface

 If we wanted an iterator that delivered the
items In a stack in the opposite order from
Arraylterator, what would we have to do?

9-22

Why use lterators?

e Traversing through the elements of a
collection Is very common in programming,
and Iiterators provide a uniform way of doing
SO

e Advantage? Using an iterator, we don’t need
to know how the collection i1s implemented!

9-23

