Ilterators



What Is an lterator?

An iterator Is an abstract data type that
allows us to iterate through the elements of
a collection one by one

9-2



What Is an lterator?

An iterator Is an abstract data type that
allows us to iterate through the elements of
a collection one by one

Operations

* next: next element of the collection;
ERROR If the element does not exist

 hasNext: true If there are more elements
In the collection; false otherwise

 remove: removes the last element
returned by the iterator 03



Consider an iterator for a collection storing

the following elements:

23

34

9-4



Consider an iterator for a collection storing

the following elements:

23

next.

34

-5



Consider an iterator for a collection storing

the following elements:

L] L

23

next. o

34

9-6



Consider an iterator for a collection storing

the following elements:

L] L

23

next.

34

-7



Consider an iterator for a collection storing
the following elements:

‘5“9‘ 23 34

next. 9




Consider an iterator for a collection storing
the following elements:

‘5“9‘ 23 34

hasNext:



Consider an iterator for a collection storing
the following elements:

|5 |

hasNext: true

[ © |

23

34

2-10



Consider an iterator for a collection storing
the following elements:

|5 |

remove

[ © |

23

34

2-11



Consider an iterator for a collection storing

the following elements:

|5 |

23

remove

34

9-12



Consider an iterator for a collection storing

the following elements:

|5 |

next:

23

=

34

2-13



Consider an iterator for a collection storing

the following elements:

next:

34

2-14



lterator Interface

public interface Iterator<T> {
public boolean hasNext( );
public T next();
public void remove( ); // (optional operation)

}

It is In the java.util package of the Java API

2-15



Consider a collection of data items stored In an

Array lterator

array
1 2 3 4 S)
I I ( |null | null] eee| null
items i i !
4
count

9-16



Consider a collection of data items stored In an

Array lterator

array
1 2 3 4 5
I I ( |null | null] eee| null
items i i !
4
count
0
current

9-17



Consider a collection of data items stored In an

Array lterator

array
0 1 2 3 4 5
| | I ( |null | null] eee| null
items |ji i v
4
count
1
current

next

9-18



// Represents an iterator over the elements of an array
Import java.util.*;
public class Arraylterator<T> implements lterator<T> {

/I Attributes
private int count; // number of elements in collection

private int current; // current position in the iteration
private T[ ] items; //items in the collection

/I Constructor: sets up this iterator using the
/[ specified items

public Arraylterator (T[ ] collection, int size) {
items = collection;
count = size;
current = 0;

} 2-19



/I Returns true If this iterator has at least one
/I more element to deliver In the iteration

public boolean hasNext() {
return (current < count);

}

/I Returns the next element in the iteration.
/I If there are no more elements In this iteration,
// throws an exception.

public T next() {
If (! hasNext())
throw new NoSuchElementException( );
current++;
return itemsjcurrent - 1j;

}

2-20



Linked lterator

Consider a collection of data items stored in a
linked list.

- ﬁ e

9-21




Linked lterator

Consider a collection of data items stored in a
linked list.

current

l

head — o o

L L

next

9-22



Linked lterator

Consider a collection of data items stored in a
linked list.

current

\ 4
head — o >

L L

next

9-23



Import java.util.*;
public class LinkedIterator<T> implements lterator<T> {

/[l Attributes
private LinearNode<T> current; // current position

[/ Constructor: Sets up this iterator
public Linkedlterator (LinearNode<T> collection){
current = collection;

9-24



/[ Returns true If this iterator has at least one more element
/[ to deliver in the iteration.
public boolean hasNext( ) {

return (current !'= null);
}
/[ Returns the next element in the iteration. If there are no
// more elements in this iteration, throws an exception.
public T next() {

if (! hasNext())

throw new NoSuchElementException( );

T result = current.getElement( );

current = current.getNext( );

return result;

9-25



lterators for a Collection

A List ADT can be implemented using, for
example, an array or a linked list. For each
Implementation we can add an iterator operation
that returns an iterator for the corresponding list.

9-26



iterator method for ArrayList

/**

* Returns an iterator for the elements currently in this list.
*

* @return an iterator for the elements in this list
*/
public Iterator<T> iterator() {
return new Arraylterator<T> (list, size);

}

9-27



iterator method for ArrayList

/**

* Returns an iterator for the elements currently in this list.
*

* @return an iterator for the elements in this list
*/
public Iterator<T> iterator() {
return new Arraylterator<T> (list, size);

}

An application can then declare an iterator as
ArrayList<String> a = new ArrayList<String>();

lterator<String> iter = a.iterator();
9-28



iterator method for LinkedList

/**

* Returns an iterator for the elements currently in this list.
* @return an iterator for the elements in this list
*/
public Iterator<T> iterator( ) {
return new Linkedlterator<T> (list);

}

An application can declare an iterator as
LinkedList<String> list = new LinkedList<String>();

Iterator<String> iter = list.iterator();

9-29



Using an Iterator in an Application

If we want to print the elements in the iterator
we can use this code:

while(iter.hasNext()) {
System.out.printin(iter.next());

}

This will work regardless of whether iter was
obtained from theArrayList or from the
LinkedList!

9-30



Why use lIterators?

* Traversing through the elements of a
collection Is very common Iin programming,
and Iiterators provide a uniform way of doing
SO.

» Advantage? Using an iterator, we don’t need
to know how the collection Is implemented!

2-31



