
Topic 14

The BinaryTree
ADT

10-2

Objectives
• Define trees as data structures
• Define the terms associated with trees
• Discuss tree traversal algorithms
• Discuss a binary tree implementation
• Examine a binary tree example

10-3

Trees
• A tree is a nonlinear data structure used to

represent entities that are in some
hierarchical relationship

• Examples in real life:
• Family tree
• Table of contents of a book
• Class inheritance hierarchy in Java
• Computer file system (folders and

subfolders)
• Decision trees
• Top-down design

10-4

Example: Computer File System

Root directory of C drive

Documents and Settings Program Files My Music

Desktop Favorites Start Menu Microsoft OfficeAdobe

10-5

Tree Definition
• Tree: a set of elements of the same type

such that
• It is empty
• Or, it has a distinguished element called

the root from which descend zero or
more trees (subtrees)

• What kind of definition is this?
• What is the base case?
• What is the recursive part?

10-6

Tree Definition

Subtrees of
the root

Root

10-7

Tree Terminology

Leaf
nodes

RootInterior
nodes

10-8

Tree Terminology

• Nodes: the elements in the tree
• Edges: connections between nodes
• Root: the distinguished element that is the

origin of the tree
• There is only one root node in a tree

• Leaf node: a node without an edge to
another node

• Interior node: a node that is not a leaf node
• Empty tree has no nodes and no edges

10-9

• Parent or predecessor: the node directly above
in the hierarchy
• A node can have only one parent

• Child or successor: a node directly below in the
hierarchy

• Siblings: nodes that have the same parent

• Ancestors of a node: its parent, the parent of its
parent, etc.

• Descendants of a node: its children, the children
of its children, etc.

Tree Terminology

10-10

Discussion

• Does a leaf node have any children?
• Does the root node have a parent?
• How many parents does every node

other than the root node have?

10-11

Height of a Tree

• A path is a sequence of edges leading
from one node to another

• Length of a path: number of edges
on the path

• Height of a (non-empty) tree : length
of the longest path from the root to a
leaf
• What is the height of a tree that has only a

root node?
• By convention, the height of an empty

tree is -1

10-12

Level of a Node

• Level of a node : number of edges
between root and node

• It can be defined recursively:
• Level of root node is 0
• Level of a node that is not the root node is

level of its parent + 1
• Question: What is the level of a node

in terms of path length?
• Question: What is the height of a tree

in terms of levels?

10-13

Level of a Node

Level 0

Level 1

Level 2

Level 3

10-14

Subtrees

• Subtree of a node: consists of a
child node and all its descendants
• A subtree is itself a tree
• A node may have many subtrees

10-15

Subtrees

Subtrees of
the root node

10-16

Subtrees

Subtrees of the
node labeled E

E

10-17

More Tree Terminology

• Degree or arity of a node: the number of
children it has

• Degree or arity of a tree: the maximum
of the degrees of the tree’s nodes

10-18

Binary Trees

• General tree: a tree each of whose
nodes may have any number of children

• n-ary tree: a tree each of whose nodes
may have no more than n children

• Binary tree: a tree each of whose nodes
may have no more than 2 children
• i.e. a binary tree is a tree with degree

(arity) 2
• The children (if present) are called the

left child and right child

10-19

• Recursive definition of a binary tree:
it is
• The empty tree

• Or, a tree which has a root whose left and
right subtrees are binary trees

• A binary tree is a positional tree, i.e. it
matters whether the subtree is left or
right

Binary Trees

10-20

Binary Tree

A

IH

D E

B

F

C

G

10-21

Tree Traversals

• A traversal of a tree requires that each
node of the tree be visited once
• Example: a typical reason to traverse a

tree is to display the data stored at each
node of the tree

• Standard traversal orderings:
• preorder
• inorder
• postorder
• level-order

10-22

Traversals

A

IH

D E

B

F

C

G

We’ll trace the different traversals using this tre e; recursive calls,
returns, and “visits” will be numbered in the order they occur

10-23

Preorder Traversal
• Start at the root
• Visit each node, followed by its children; we will

choose to visit left child before right

• Recursive algorithm for preorder traversal:
• If tree is not empty,

• Visit root node of tree
• Perform preorder traversal of its left subtree
• Perform preorder traversal of its right

subtree

• What is the base case?
• What is the recursive part?

10-24

Preorder Traversal

1: visit A

29: visit I9: visit H

5: visit D 17: visit E

3: visit B

27: visit F

25: visit C

39:
visit G

Nodes are visited in the order ABDHECFIG

. .
.

.. .
. ..

6

4

2

11
10

8

7

16

15

14

13
12

21

20
19

18 28

26

24

23

22

34

33

3231

30

38

37

45

44

43
42

41
40

35
36

10-25

Inorder Traversal
• Start at the root

• Visit the left child of each node, then the node,
then any remaining nodes

• Recursive algorithm for inorder traversal
• If tree is not empty,

• Perform inorder traversal of left subtree of root
• Visit root node of tree
• Perform inorder traversal of its right subtree

10-26

Inorder Traversal

23: visit A

29: visit I9: visit H

5: visit D 18: visit E

14: visit B

33: visit F

37: visit C

41:

visit G

Nodes are visited in the order DHBEAIFCG

. .
.

.. .
. ..

3

2

1

8
7

6

4

15

13

12

11
10

20

19
17

16 26

25

24

22

21

32

31

3028

27

38

36

45

44

43
42

40
39

34
35

10-27

Postorder Traversal
• Start at the root

• Visit the children of each node, then the node

• Recursive algorithm for postorder traversal
• If tree is not empty,

• Perform postorder traversal of left subtree of root
• Perform postorder traversal of right subtree of root
• Visit root node of tree

10-28

Postorder Traversal

45: visit A

30: visit I10: visit H

12: visit D 19: visit E

21: visit B

34: visit F

43: visit C

41:

visit G

Nodes are visited in the order HDEBIFGCA

. .
.

.. .
. ..

3

2

1

7
6

5

4

14

13

11

9
8

18

17
16

15 25

24

23

22

20

31

29

2827

26

36

35

44

42

40
39

38
37

32
33

10-29

Discussion

• Note that the relative order of the
recursive calls in preorder, inorder and
postorder traversals is the same

• The only differences stem from where
the visiting of the root node of a subtree
actually takes place

10-30

Level Order Traversal

• Start at the root
• Visit the nodes at each level, from left to

right

• Is there a recursive algorithm for a level
order traversal?

10-31

Level Order Traversal

A

IH

D E

B

F

C

G

Nodes will be visited in the order ABCDEFGHI

10-32

Iterative Binary Tree Traversals

• In recursive tree traversals, the Java call stack
keeps track of where we are in the tree (by
means of the call frames for each call)

• In iterative traversals, the programmer needs
to keep track!
• An iterative traversal uses a container to store

references to nodes not yet visited
• Order of visiting will depend on the type of container

being used (stack , queue , etc.)

10-33

An Iterative Traversal Algorithm

// Assumption: the tree is not empty

Create an empty container to hold references to nod es
yet to be visited.

Put reference to the root node in the container.

While the container is not empty {

Remove a reference x from the container.

Visit the node x points to.

Put references to non-empty children of x in the container.

}

}

10-34

• Container is a stack : if we push the right
successor of a node before the left successor,
we get preorder traversal

• Container is a queue : if we enqueue the left
successor before the right, we get a level order
traversal

• Exercise: Trace the iterative tree traversal
algorithm using as containers
• a stack
• a queue

Iterative Binary Tree Traversals

10-35

Traversal Analysis

• Consider a binary tree with n nodes
• How many recursive calls are there at

most?
• For each node, 2 recursive calls at

most
• So, 2*n recursive calls at most

• So, a traversal is O(n)

10-36

Operations on a Binary Tree
• What might we want to do with a binary

tree?
• Add an element (but where?)

• Remove an element (but from where?)
• Is the tree empty?

• Get size of the tree (i.e. how many
elements)

• Traverse the tree (in preorder, inorder,
postorder, level order)

10-37

Discussion

• It is difficult to have a general add
operation, until we know the purpose of
the tree (we will discuss binary search
trees later)
• We could add “randomly”: go either right

or left, and add at the first available spot

10-38

Discussion
• Similarly, where would a general

remove operation remove from?
• We could arbitrarily choose to remove, say,

the leftmost leaf
• If random choice, what would happen to

the children and descendants of the
element that was removed? What does the
parent of the removed element now point
to?

• What if the removed element is the root?

10-39

Possible Binary Tree Operations

Removes the left subtree of the rootremoveLeftSubtree

Removes the right subtree of the rootremoveRightSubtree

Removes all elements from the treeremoveAllElements

Determines the number of elements in the treesize

Determines if a particular element is in the treecontains

Returns a string representation of tree’s contentstoString

Returns an iterator for an inorder traversaliteratorInOrder

Returns an iterator for a levelorder traversaliteratorLevelOrder

Returns an iterator for a postorder traversaliteratorPostOrder

Returns an iterator for a preorder traversaliteratorPreOrder

Returns a reference to the specified target, if fou ndfind

Determines whether the tree is emptyisEmpty

DescriptionOperation

10-40

Binary Tree Operations

• Our textbook has a smaller set of
operations for the BinaryTreeADT
• See BinaryTreeADT.java

10-41

UML Description of the
BinaryTreeADT interface

getRoot()
isEmpty()
size()
contains()
find()
toString()
iteratorInOrder()
iteratorPreOrder()
iteratorPostOrder()
iteratorLevelOrder()

<<interface>>
BinaryTreeADT

10-42

Linked Binary Tree Implementation
• To represent the binary tree, we will use a

linked structure of nodes
• root : reference to the node that is the root

of the tree
• count : keeps track of the number of nodes

in the tree

• First, how will we represent a node of a
binary tree?

10-43

Binary Tree Node

• A binary tree node will contain
• a reference to a data element
• references to its left and right children

left and right children are binary tree nodes thems elves

10-44

BinaryTreeNode class

• Represents a node in a binary tree
• Attributes:

• element: reference to data element
• left: reference to left child of the node
• right: reference to right child of the node

• See BinaryTreeNode.java
• Note that the attributes here are protected

• This means that they can be accessed directly from
any class that is in the same package as
BinaryTreeNode.java

10-45

A BinaryTreeNode Object

protected T element;
protected BinaryTreeNode<T> left, right;

element

data object

left right

Note that either or both of the left and right references could be null

10-46

LinkedBinaryTree Class

• Attributes:
protected BinaryTreeNode<T> root;
protected int count;

• The attributes are protected so that they can
be accessed directly in any subclass of the
LinkedBinaryTree class
• We will be looking at a very useful kind of

binary tree called a Binary Search Tree
later

10-47

LinkedBinaryTree Class
• Constructors:

//Creates empty binary tree

public LinkedBinaryTree() {
count = 0;
root = null;

}
//Creates binary tree with specified element as its root
public LinkedBinaryTree (T element) {

count = 1;
root = new BinaryTreeNode<T> (element);

}

10-48

/* Returns a reference to the specified target element if it is
found in this binary tree.
Throws an ElementNotFoundException if not found. */

public T find(T targetElement) throws
ElementNotFoundException

{
BinaryTreeNode<T> current =

findAgain(targetElement, root);
if (current == null)

throw new ElementNotFoundException("binary tree");

return (current.element);
} find method

10-49

Discussion

• What is element in this statement from
the method?

return (current.element);
• If element were private rather than

protected in BinaryTreeNode.java, what
would be need in order to access it?

• We will now look at the helper method
findAgain …

10-50

private BinaryTreeNode<T> findAgain(T targetElement,
BinaryTreeNode<T> next)

{
if (next == null)

return null;
if (next.element.equals(targetElement))

return next;
BinaryTreeNode<T> temp =

findAgain(targetElement, next.left);
if (temp == null)

temp = findAgain(targetElement, next.right);
return temp;

} findAgain helper method

10-51

Discussion

• What kind of method is findAgain?
• What is the base case?

• There are two!
• What is the recursive part?

10-52

/* Performs an inorder traversal on this binary tree by
calling a recursive inorder method that starts with
the root.
Returns an inorder iterator over this binary tree */
public Iterator<T> iteratorInOrder()
{

ArrayUnorderedList<T> tempList =
new ArrayUnorderedList<T>();

inorder (root, tempList);
return tempList.iterator();

}
iteratorInOrder method

10-53

Discussion

• iteratorInOrder is returning an iterator
object
• It will perform the iteration in inorder

• But where is that iterator coming from?
return tempList.iterator();

• Let’s now look at the helper method
inorder …

10-54

/* Performs a recursive inorder traversal.
Parameters are: the node to be used as the root
for this traversal, the temporary list for use in this
traversal */
protected void inorder (BinaryTreeNode<T> node,

ArrayUnorderedList<T> tempList)
{

if (node != null)
{

inorder (node.left, tempList);
tempList.addToRear(node.element);
inorder (node.right, tempList);

}
} inorder helper method

10-55

Discussion

• Recall the recursive algorithm for inorder
traversal:
• If tree is not empty,

• Perform inorder traversal of left subtree of
root

• Visit root node of tree
• Perform inorder traversal of its right subtree

• That’s exactly the order that is being
implemented here!

• What is “visiting” the root node here?

10-56

Discussion

• The data elements of the tree (i.e. items
of type T) are being temporarily added
to an unordered list, in inorder order
• Why use an unordered list??

• Why not? We already have this
collection, with its iterator operation
that we can use!

10-57

Using Binary Trees: Expression Trees

• Programs that manipulate or evaluate
arithmetic expressions can use binary
trees to hold the expressions

• An expression tree represents an
arithmetic expression such as
(5 – 3) * 4 + 9 / 2
• Root node and interior nodes contain

operations
• Leaf nodes contain operands

10-58

Example: An Expression Tree

/

-

35

+

(5 – 3) * 4 + 9 / 2

4

*

9 2

10-59

Evaluating Expression Trees

• We can use an expression tree to
evaluate an expression
• We start the evaluation at the bottom left
• What kind of traversal is this?

10-60

Evaluating an Expression Tree

-

57 8/

29

* This tree represents
the expression

(9 / 2 + 7) * (8 – 5)

Evaluation is based on postorder traversal:

If root node is a leaf, return the associated value.

Recursively evaluate expression in left subtree.

Recursively evaluate expression in right subtree.

Perform operation in root node on these two
values, and return result.

+

10-61

Building an Expression Tree

• Now we know how to evaluate an
expression represented by an expression
tree

• But, how do we build an expression tree?
• We will build it from the postfix form of

the expression
• Exercise: develop the algorithm by

following the diagrams on the next pages

10-62

Building an Expression Tree

• The algorithm will use a stack of
ExpressionTree objects
• An ExpressionTree is a special case of a

binary tree
• The ExpressionTree constructor has 3

parameters:
• Reference to data item
• Reference to left child
• Reference to right child

• That's all you need to know to develop the
algorithm!

10-63

Build an expression tree from the postfix
expression 5 3 - 4 * 9 +

Token

5 push(new ExpressionTree(5,null,null));
Processing Step(s)

Expression Tree Stack (top at right)

5

Token

3 push(new ExpressionTree(3,null,null));
Processing Step(s)

Expression Tree Stack (top at right)

5 3

10-64

Token

- op2 = pop
op1 = pop
push(new ExpressionTree(-,op1,op2));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

10-65

Token

4 push(new ExpressionTree(4,null,null));
Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

10-66

Token

* op2 = pop
op1 = pop
push(new ExpressionTree(*,op1,op2));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

*

10-67

Token

9 push(new ExpressionTree(9,null,null));
Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

* 9

10-68

Token

+ op2 = pop
op1 = pop
push(new ExpressionTree(+,op1,op2));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

* 9

+
End of the expression
has been reached, and
the full expression tree
is the only tree left on
the stack

