
The Tree ADT

10-2

Objectives

• Define trees as data structures

• Define the terms associated with trees

• Discuss tree traversal algorithms

• Discuss a binary tree implementation

• Examine a binary tree example

10-3

Trees

• A tree is a nonlinear abstract data type that
stores elements in a hierarchy.

• Examples in real life:

• Family tree

• Table of contents of a book

• Class inheritance hierarchy in Java

• Computer file system (folders and subfolders)

• Decision trees

10-4

Example: Computer File System

Root directory of C drive

Documents and Settings Program Files My Music

Desktop Favorites Start Menu Microsoft OfficeAdobe

10-5

Example: Table of Contents

Java Software Structures

Introduction Analysis of Algorithms Index

Software

Quality

Data

Structures

Algorithm

Efficiency

Time ComplexityBig Oh

Notatio

3-6

Example: Java’s Class Hierarchy

Error

Object

Exception Square

StringRectangleThrowableArray

. . .

.

.

.

.

.

.

10-7

Tree Definition

• Tree: a set of elements that either

• it is empty

• or, it has a distinguished element called
the root and zero or more trees (called
subtrees of the root)

• What kind of definition is this?

• What is the base case?

• What is the recursive part?

10-8

Tree Definition

Subtrees of

the root

Root

10-9

Tree Terminology

• Nodes: the elements in the tree

• Edges: connections between nodes

• Root: the distinguished element that is the

origin of the tree

• There is only one root node in a tree

• Empty tree has no nodes and no edges

10-10

Tree Terminology

node or

vertex

Rootedge

arc, or

link

10-11

• Parent or predecessor: the node directly above

another node in the hierarchy

• A node can have only one parent

• Child or successor: a node directly below

another node in the hierarchy

• Siblings: nodes that have the same parent

• Ancestors of a node: its parent, the parent of its

parent, etc.

• Descendants of a node: its children, the children

of its children, etc.

Tree Terminology

10-12

Tree Terminology

• Leaf node: a node without children

• Internal node: a node that is not a leaf node

10-13

Tree Terminology

Leaf

nodes or

external

nodes

Root

Interior or

internal

nodes

10-14

Discussion

• Does a leaf node have any children?

• Does the root node have a parent?

• How many parents does every node

other than the root node have?

10-15

Height of a Tree

• A path is a sequence of edges leading
from one node to another

• Length of a path: number of edges
on the path

• Height of a (non-empty) tree : length
of the longest path from the root to a
leaf

• What is the height of a tree that has only a
root node?

• By convention, the height of an empty
tree is -1

10-16

Tree Terminology

Root
A

B

F H

E

J

C D

I

L M N

G

K

Height = 3

10-17

Level of a Node

• Level of a node: number of edges
between root and the node

• It can be defined recursively:

• Level of root node is 0

• Level of a node that is not the root node is
level of its parent + 1

• Question: What is the level of a node
in terms of path length?

• Question: What is the height of a tree
in terms of levels?

10-18

Level of a Node

Level 0

Level 1

Level 2

Level 3

10-19

Subtrees

• Subtree of a node: consists of a

child node and all its descendants

• A subtree is itself a tree

• A node may have many subtrees

10-20

Subtrees

Subtrees of the

node labeled E

E

10-21

More Tree Terminology

• Degree or arity of a node: the number of

children it has

• Degree or arity of a tree: the maximum

of the degrees of the tree’s nodes

10-22

Degree

A

B

F H

E

J

C D

I

L M

G

K

4

2 1 1 3

1

0

0 1 0 1

0 0

Degree of a tree: the maximum degree of its nodes

10-23

Binary Trees

• General tree: a tree each of whose
nodes may have any number of children

• n-ary tree: a tree each of whose nodes
may have no more than n children

• Binary tree: a tree each of whose nodes
may have no more than 2 children

• i.e. a binary tree is a tree with degree
(arity) 2

• The children (if present) are called the
left child and right child

10-24

• Recursive definition of a binary tree:

it is

• The empty tree

• Or, a tree which has a root whose left and

right subtrees are binary trees

• A binary tree is a positional tree, i.e. it

matters whether the subtree is left or

right

Binary Trees

10-25

Binary Tree

A

IH

D E

B

F

C

G

10-26

Tree Traversals

• A traversal of a tree requires that each
node of the tree be visited once

• Example: a typical reason to traverse a
tree is to display the data stored at each
node of the tree

• Standard traversal orderings:

• preorder

• inorder

• postorder

• level-order

10-27

Traversals

We’ll trace the different traversals using this tree; recursive calls,

returns, and “visits” will be numbered in the order they occur

A

IH

D E

B

F

C

G

10-28

Preorder Traversal
• Start at the root

• Visit each node, followed by its children; we will
choose to visit left child before right

• Recursive algorithm for preorder traversal:

• If tree is not empty,

• Visit root node of tree

• Perform preorder traversal of its left subtree

• Perform preorder traversal of its right
subtree

• What is the base case?

• What is the recursive part?

10-29

Preorder Traversal

public void preorder (BinaryTreeNode<T> r) {

if (r != null) {

visit(r);

preorder (r.getLeftChild());

preorder (r.getRightChild());

}

}

10-30

Preorder Traversal

1: visit A

29: visit I9: visit H

5: visit D 17: visit E

3: visit B

27: visit F

25: visit C

39:

visit G

Nodes are visited in the order ABDHECFIG

. .

.

.. .

. ..

6

4

2

11
10

8

7

16

15

14

13
12

21

20
19

18 28

26

24

23

22

34

33

3231

30

38

37

45

44

43

42
41

40

35
36

10-31

Inorder Traversal

• Start at the root

• Visit the left child of each node, then the node,

then any remaining nodes

• Recursive algorithm for inorder traversal

• If tree is not empty,

• Perform inorder traversal of left subtree of root

• Visit root node of tree

• Perform inorder traversal of its right subtree

10-32

Inorder Traversal

public void inorder (BinaryTreeNode<T> r) {

if (r != null) {

inorder (r.getLeftChild());

visit(r);

inorder (r.getRightChild());

}

}

10-33

Inorder Traversal

23: visit A

29: visit I9: visit H

5: visit D 18: visit E

14: visit B

33: visit F

37: visit C

41:

visit G

Nodes are visited in the order DHBEAIFCG

. .

.

.. .

. ..

3

2

1

8
7

6

4

15

13

12

11

10

20

19
17

16 26

25

24

22

21

32

31

3028

27

38

36

45

44

43
42

40
39

34
35

10-34

Postorder Traversal
• Start at the root

• Visit the children of each node, then the node

• Recursive algorithm for postorder traversal

• If tree is not empty,

• Perform postorder traversal of left subtree of root

• Perform postorder traversal of right subtree of root

• Visit root node of tree

10-35

Postorder Traversal

public void postorder (BinaryTreeNode<T> r) {

if (r != null) {

postorder (r.getLeftChild());

postorder (r.getRightChild());

visit(r);

}

}

10-36

Postorder Traversal

45: visit A

30: visit I10: visit H

12: visit D 19: visit E

21: visit B

34: visit F

43: visit C

41:

visit G

Nodes are visited in the order HDEBIFGCA

. .

.

.. .

. ..

3

2

1

7
6

5

4

14

13

11

9
8

18

17
16

15 25

24

23

22

20

31

29

2827

26

36

35

44

42

40

39
38

37

32
33

10-37

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to

right

• Is there a recursive algorithm for a level

order traversal?

10-38

Level Order Traversal

A

IH

D E

B

F

C

G

Nodes will be visited in the order ABCDEFGHI

10-39

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

queue

10-40

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A

10-41

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A

10-42

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A

B C

10-43

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A B

C

10-44

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A B

C D E

10-45

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A B C

D E F G

10-46

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A B C D

E F G H

10-47

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A B C D E

F G H

10-48

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A B C D E F

G H I

10-49

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A B C D E F G

H I

10-50

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A B C D E F G H

I

10-51

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

A B C D E F G H I

10-52

Level order Traversal

public void levelOrder (BinaryTreeNode<T> root) {

if (root == null) return;

LinkedQueue<T> Q = new LinkedQueue<T>();

Q.enqueue(root);

while (!Q.isEmpty()) {

BinaryTreeNode<T> v = Q.dequeue();

visit(v);

if (v.leftChild() != null) Q.enqueue(v.leftChild());

if (v.rightChild() != null) Q.enqueue(v.rightChild());

}

}

10-53

Iterative Binary Tree Traversals

• In recursive tree traversals, the Java execution

stack keeps track of where we are in the tree

(by means of the activation records for each call)

• In iterative traversals, the programmer needs

to keep track!

• An iterative traversal uses a container to store

references to nodes not yet visited

• Order of visiting will depend on the type of container

being used (stack, queue, etc.)

10-54

An Iterative Traversal Algorithm

// Assumption: the tree is not empty

Create an empty container to hold references to nodes

yet to be visited.

Put reference to the root node in the container.

While the container is not empty {

Remove a reference x from the container.

Visit the node x points to.

Put references to non-empty children of x in the container.

}

}

10-55

• Container is a stack: if we push the right

successor of a node before the left successor,

we get preorder traversal

• Container is a queue: if we enqueue the left

successor before the right, we get a level order

traversal

• Exercise: Trace the iterative tree traversal

algorithm using as containers

• a stack

• a queue

Iterative Binary Tree Traversals

10-56

Traversal Analysis

• Consider a binary tree with n nodes

• How many recursive calls are there at

most?

• For each node, 2 recursive calls at

most

• So, 2*n recursive calls at most

• So, a traversal is O(n)

10-57

Operations on a Binary Tree

• What might we want to do with a binary

tree?

• Add an element (but where?)

• Remove an element (but from where?)

• Is the tree empty?

• Get size of the tree (i.e. how many

elements)

• Traverse the tree (in preorder, inorder,

postorder, level order)

10-58

Discussion

• It is difficult to have a general add

operation, until we know the purpose of

the tree (we will discuss binary search

trees later)

• We could add “randomly”: go either right

or left, and add at the first available spot

10-59

Discussion

• Similarly, where would a general
remove operation remove from?

• We could arbitrarily choose to remove, say,
the leftmost leaf

• If random choice, what would happen to
the children and descendants of the
element that was removed? What does the
parent of the removed element now point
to?

• What if the removed element is the root?

10-60

Possible Binary Tree Operations

Operation Description

getRoot Returns a reference to the root of the tree

isEmpty Determines whether the tree is empty

size Determines the number of elements in the tree

find Returns a reference to the specified target, if found

toString Returns a string representation of tree’s contents

iteratorInOrder Returns an iterator for an inorder traversal

iteratorPreOrder Returns an iterator for a preorder traversal

iteratorPostOrder Returns an iterator for a postorder traversal

iteratorLevelOrder Returns an iterator for a levelorder traversal

Binary Tree ADT

package binaryTree;

import java.util.Iterator;

public interface BinaryTreeADT<T> {

public T getRoot ();

public boolean isEmpty();

public int size();

public T find (T targetElement) throws

ElementNotFoundException;

public String toString();

public Iterator<T> iteratorInOrder();

public Iterator<T> iteratorPreOrder();

public Iterator<T> iteratorPostOrder();

public Iterator<T> iteratorLevelOrder();

}
10-61

10-62

Linked Binary Tree Implementation

• To represent the binary tree, we will use a
linked structure of nodes

• root: reference to the node that is the root
of the tree

• count: keeps track of the number of nodes
in the tree

• First, how will we represent a node of a
binary tree?

10-63

Linked Binary Tree Implementation

• A binary tree node will contain

• a reference to a data element

• references to its left and right children and

parent

left and right children are binary tree nodes themselves

10-64

BinaryTreeNode class

• Represents a node in a binary tree

• Attributes:

• element: reference to data element

• left: reference to left child of the node

• right: reference to right child of the node

• parent: reference to the parent of the node

• See BinaryTreeNode.java
• Note that the attributes here are protected

• This means that they can be accessed directly from
any class that is in the same package as
BinaryTreeNode.java

10-65

A BinaryTreeNode Object

protected T element;

protected BinaryTreeNode<T> left, right, parent;

Note that either or both of the left and right references could be null

10-66

LinkedBinaryTree Class

• Attributes:

protected BinaryTreeNode<T> root;

protected int count;

• The attributes are protected so that they can

be accessed directly in any subclass of the

LinkedBinaryTree class

• We will be looking at a very useful kind of

binary tree called a Binary Search Tree

later

10-67

LinkedBinaryTree Class

• Constructors:

//Creates empty binary tree

public LinkedBinaryTree() {

count = 0;

root = null;

}

//Creates binary tree with specified element as its root

public LinkedBinaryTree (T element) {

count = 1;

root = new BinaryTreeNode<T> (element);

}

10-68

/* Returns a reference to the specified target element if it is
found in this binary tree.
Throws an ElementNotFoundException if not found. */

public T find(T targetElement) throws
ElementNotFoundException

{

BinaryTreeNode<T> current =
findAgain(targetElement, root);

if (current == null)

throw new ElementNotFoundException("binary tree");

return (current.element);

}

10-69

Discussion

• What is element in this statement from
the method?

return (current.element);

• If element were private rather than
protected in BinaryTreeNode.java, what
would be need in order to access it?

• We will now look at the helper method
findAgain …

10-70

private BinaryTreeNode<T> findAgain(T targetElement,

BinaryTreeNode<T> next)

{

if (next == null)

return null;

if (next.element.equals(targetElement))

return next;

BinaryTreeNode<T> temp =

findAgain(targetElement, next.left);

if (temp == null)

temp = findAgain(targetElement, next.right);

return temp;

}

10-71

Discussion

• What kind of method is findAgain?

• What is the base case?

• There are two!

• What is the recursive part?

10-72

/* Performs an inorder traversal on this binary tree by
calling a recursive inorder method that starts with
the root.
Returns an inorder iterator over this binary tree */

public Iterator<T> iteratorInOrder()

{

ArrayUnorderedList<T> tempList =
new ArrayUnorderedList<T>();

inorder (root, tempList);

return tempList.iterator();

}

10-73

Discussion

• iteratorInOrder is returning an iterator

object

• It will perform the iteration in inorder

• But where is that iterator coming from?

return tempList.iterator();

• Let’s now look at the helper method

inorder …

10-74

/* Performs a recursive inorder traversal.
Parameters are: the node to be used as the root
for this traversal, the temporary list for use in this
traversal */

protected void inorder (BinaryTreeNode<T> node,

ArrayUnorderedList<T> tempList)

{

if (node != null)

{

inorder (node.left, tempList);

tempList.addToRear(node.element);

inorder (node.right, tempList);

}

}

10-75

Discussion

• Recall the recursive algorithm for inorder
traversal:

• If tree is not empty,

• Perform inorder traversal of left subtree of
root

• Visit root node of tree

• Perform inorder traversal of its right subtree

• That’s exactly the order that is being
implemented here!

• What is “visiting” the root node here?

10-76

Discussion

• The data elements of the tree (i.e. items

of type T) are being temporarily added

to an unordered list, in inorder order

• Why use an unordered list??

• Why not? We already have this

collection, with its iterator operation

that we can use!

10-77

Using Binary Trees: Expression Trees

• Programs that manipulate or evaluate
arithmetic expressions can use binary
trees to hold the expressions

• An expression tree represents an
arithmetic expression such as
(5 – 3) * 4 + 9 / 2

• Root node and interior nodes contain
operations

• Leaf nodes contain operands

10-78

Example: An Expression Tree

/

-

35

+

(5 – 3) * 4 + 9 / 2

4

*

9 2

10-79

Evaluating Expression Trees

• We can use an expression tree to evaluate

an expression

• We start the evaluation at the bottom left

• What kind of traversal is this?

10-80

Evaluating an Expression Tree

-

57 8/

29

* This tree represents

the expression

(9 / 2 + 7) * (8 – 5)

Evaluation is based on postorder traversal:

If root node is a leaf, return the associated value.

Recursively evaluate expression in left subtree.

Recursively evaluate expression in right subtree.

Perform operation in root node on these two

values, and return result.

+

10-81

Evaluating an Expression Tree

-

57 8/

29

*

+

10-82

Evaluating an Expression Tree

-

57 8/

29

*

+

4.5

10-83

Evaluating an Expression Tree

-

57 8/

29

*

+

4.5

11.5

10-84

Evaluating an Expression Tree

-

57 8/

29

*

+

4.5

11.5 3

10-85

Evaluating an Expression Tree

-

57 8/

29

*

+

4.5

11.5 3

34.5

10-86

Building an Expression Tree

• Now we know how to evaluate an

expression represented by an expression

tree

• But, how do we build an expression tree?

• We will build it from the postfix form of

the expression

• Exercise: develop the algorithm by

following the diagrams on the next pages

10-87

Building an Expression Tree

• The algorithm will use a stack of
ExpressionTree objects

• An ExpressionTree is a special case of a
binary tree

• The ExpressionTree constructor has 3
parameters:

• Reference to data item

• Reference to left child

• Reference to right child

• That's all you need to know to develop the
algorithm!

10-88

Build an expression tree from the postfix

expression 5 3 - 4 * 9 +

Symbol

5
push(new ExpressionTree(5,null,null));

Processing Step(s)

Expression Tree Stack (top at right)

5

Symbol

3
push(new ExpressionTree(3,null,null));

Processing Step(s)

Expression Tree Stack (top at right)

5 3

10-89

Symbol

-
op2 = pop

op1 = pop

push(new ExpressionTree(-,op1,op2));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

10-90

Symbol

4
push(new ExpressionTree(4,null,null));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

10-91

Symbol

*
op2 = pop

op1 = pop

push(new ExpressionTree(*,op1,op2));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

*

10-92

Symbol

9
push(new ExpressionTree(9,null,null));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

* 9

10-93

Symbol

+
op2 = pop

op1 = pop

push(new ExpressionTree(+,op1,op2));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

* 9

+
End of the expression

has been reached, and

the full expression tree

is the only tree left on

the stack

