
The Binary Search

Tree ADT

11-2

Binary Search Tree

• A binary search tree (BST) is a binary
tree with an ordering property of its
elements, such that the data in any
internal node is

• Greater than the data in any node in its left
subtree

• Less than the data in any node in its right
subtree

• Note: this definition does not allow
duplicates; some definitions do, in which
case we could say “less than or equal
to”

11-3

Binary Search Tree

A binary search tree (BST) is a binary tree with
the following ordering property on all its internal
nodes:

d

d > data in

any node

in left

subtree

d < data in

any node

in right

subtree

11-4

Examples: are these Binary

Search Trees?

157

8

11

16

93

10

268

9

19

23

125

14

11-5

• Observations:

• What is in the leftmost node?

• What is in the rightmost node?

Discussion

11-6

268

9

19

23

125

14

13

smallest

value

Properties of Binary Search Trees

32

largest

value

11-7

BST Operations

• A binary search tree is a special case of a

binary tree

• So, it has all the operations of a binary tree

• It also has operations specific to a BST:

• add an element (requires that the BST

property be maintained)

• remove an element (requires that the BST

property be maintained)

• remove the maximum element

• remove the minimum element

11-8

Searching in a BST

• Why is it called a binary search tree?

• Data is stored in such a way, that it can be

more efficiently found than in an ordinary

binary tree

11-9

• Algorithm to search for an item in a
BST

• Compare data item to the root of the
(sub)tree

• If data item = data at root, found

• If data item < data at root, go to the left;
if there is no left child, data item is not in
tree

• If data item > data at root, go to the
right; if there is no right child, data item
is not in tree

Searching in a BST

11-10

private BinaryTreeNode<T> find (T element, BinaryTreeNode<T> r) {

if (r == null) return null;

else {

Comparable<T> comparableElement = (Comparable<T>)element;

if (comparableElement.compareTo(r.element) == 0)

return r;

else if (comparableElement.compareTo(r.element) > 0)

return find(element,r.right);

else return find(element,r.left);

}

}

11-11

Search Operation

268

9

19

23

123

14

268

9

19

23

123

14

Search for 13: visited nodes

are coloured yellow; return

false when node containing

12 has no right child

Search for 22: return false

when node containing 23

has no left child

11-12

BST Operations: add

• To add an item to a BST:

• Follow the algorithm for searching, until

there is no child

• Insert at that point

• So, new node will be added as a leaf

• (We are assuming no duplicates

allowed)

11-13

Add Operation

268

9

19

23

123

14 To insert 13:

Same nodes are visited as

when searching for 13.

Instead of returning false

when the node containing

12 has no right child, build

the new node, attach it as

the right child of the node

containing 12, and return

true.13

11-14

Algorithm insert(k, r)

Input: value k, node r of a binary search tree

Output: true if k was successfully added and false if not

if tree is empty then {

set new node storing k as the root of the tree

return true

}

if k is equal to the value at r then return false // no duplicates allowed

else if k < value at r then

if r has no left child then {

set new node storing k as left child of r

return true

}

else return insert (k, left child of r)

else // k > value at r

if r has no right child then {

set new node storing k as right child of r

return true

}

else return insert (k, right child of r)

11-15

Example: Adding Elements to a BST

26

1: Add 26

26

2: Add 15

15

26

3: Add 38

15 38

26

4: Add 31

15 38

31

26

5: Add 7

15 38

317

26

5: Add 34

15 38

317

34

11-16

Binary Search Tree Traversals

• Consider the traversals of a binary search
tree: preorder, inorder, postorder, level-
order

• Try the traversals on the example on the
next page

• Is there anything special about the order of
the data in the BST, for each traversal?

• Question: what if we wanted to visit the
nodes in descending order?

11-17

Binary Search Tree Traversals

268

9

19

23

123

14
Try these traversals:

• preorder

• inorder

• postorder

• level-order

11-18

Binary Search Tree ADT

• A binary search tree is just a binary tree

with the ordering property imposed on all

nodes in the tree

• So, we can define the

BinarySearchTreeADT interface as an

extension of the BinaryTreeADT interface

11-19

public interface BinarySearchTreeADT<T> extends
BinaryTreeADT<T> {

public void addElement (T element);

public T removeElement (T targetElement);

public void removeAllOccurrences (T targetElement);

public T removeMin();

public T removeMax();

public T findMin();

public T findMax();

}

11-20

Implementing BSTs using Links

• The special thing about a Binary Search Tree is

that finding a specific element is efficient!

• So, LinkedBinarySearchTree has a find method

that overrides the find method of the parent

class LinkedBinaryTree

• It only has to search the appropriate side of the tree

• It uses a recursive helper method findAgain

• Note that it does not have a contains method that

overrides the contains of LinkedBinaryTree – why not?

• It doesn’t need to, because contains just calls find

11-21

Using Binary Search Trees:

Implementing Ordered Lists

• A BST can be used to provide efficient

implementations of other collections!

• We will examine an implementation of an

Ordered List ADT as a binary search

tree

• Our implementation is called

BinarySearchTreeList.java
(naming convention same as before: this is a

BST implementation of a List)

11-22

• BinarySearchTreeList implements
OrderedListADT

• Which extends ListADT

• So it also implements ListADT

• So, what operations do we need to implement?
• add

• removeFirst, removeLast, remove, first, last,
contains, isEmpty,size, iterator, toString

• But, for which operations do we actually need to
write code? …

Using BST to Implement Ordered List

11-23

Using BST to Implement Ordered List

• BinarySearchTreeList extends our

binary search tree class

LinkedBinarySearchTree

• Which extends LinkedBinaryTree

• So, what operations have we inherited ?

• addElement, removeElement, removeMin,

removeMax, findMin, findMax, find

• getRoot, isEmpty, size, contains, find, toString,

iteratorInOrder, iteratorPreOrder,

iteratorPostOrder, iteratorLevelOrder

11-24

Discussion

• First, let us consider some of the methods

of the List ADT that we do not need to

write code for:

• contains method: we can just use the one

from the LinkedBinaryTree class

• What about the methods

• isEmpty

• size

• toString

11-25

Discussion

• To implement the following methods of the

OrderedListADT , we can call the appropriate

methods of the LinkedBinarySearchTree class

(fill in the missing ones)

• add call addElement

• removeFirst removeMin

• removeLast

• remove

• first

• last

• iterator

