
Analysis of

Algorithms

12-2

Analysis of Algorithms- Review

• Efficiency of an algorithm can be
measured in terms of :

• Time complexity: a measure of the amount
of time required to execute an algorithm

• Space complexity: amount of memory
required

• Which measure is more important?

• It often depends on the limitations of the
technology available at time of analysis (e.g.
processor speed vs memory space)

12-3

Time Complexity Analysis

• Objectives of time complexity analysis:

• To determine the efficiency of an algorithm

by computing an upper bound on the

amount of work that it performs

• To compare different algorithms before

deciding which one to implement

• Time complexity analysis for an algorithm is

independent of the programming language

and the machine used

12-4

• Time complexity expresses the

relationship between

• the size of the input

• and the execution time for the

algorithm

Time Complexity Analysis

12-5

Time Complexity Measurement

• Based on the number of basic or
primitive operations in an algorithm:

• Number of arithmetic operations performed

• Number of comparisons

• Number of Boolean operations performed

• Number of array elements accessed

• etc.

• Think of this as the work done

12-6

Example: Polynomial Evaluation
 Consider the polynomial

 P(x) = 4x4 + 7x3 – 2x2 + 3x1 + 6

 Suppose that exponentiation is carried out using

multiplications. Two ways to evaluate this

polynomial are:

 Brute force method:

 P(x) = 4*x*x*x*x + 7*x*x*x – 2*x*x + 3*x + 6

 Horner’s method:

 P(x) = (((4*x + 7) * x – 2) * x + 3) * x + 6

12-7

 Method of analysis

 • What are the basic operations here?

• multiplication, addition, and subtraction

• We will look at the worst case (maximum

number of operations) to get an upper bound on

the work and thus of the running time of the

algorithm

12-8

General form of a polynomial of degree n is

 P(x) = anxn + an-1x
n-1

 + an-2x
n-2 + … + a1x

1 + a0

where an is non-zero for all n >= 0 (this is the

worst case)

Method of analysis

12-9

 Analysis of Brute Force Method

 P(x) = an * x * x * … * x * x + n multiplications

 a n-1 * x * x * … * x * x + n-1 multiplications

 a n-2 * x * x * … * x * x + n-2 multiplications

 … + …

 a2 * x * x + 2 multiplications

 a1 * x + 1 multiplication

 a0
n total additions

12-10

Number of operations needed in the worst case is

T(n) = n + (n-1) + (n-2) + … + 3 + 2 + 1 + n

 = n (n + 1) / 2 + n (see below)

 = n2 / 2 + 3n / 2

Sum of first n natural numbers:

Write the n terms of the sum in forward and reverse

orders:

 t(n) = 1 + 2 + 3 + … + (n-2) + (n-1) + n

 t(n) = n + (n-1) + (n-2) + … + 3 + 2 + 1

Add the corresponding terms:

 2*t(n) = (n+1) + (n+1) + (n+1) + … + (n+1) + (n+1) + (n+1)

 = n (n+1)

Therefore, t(n) = n (n+1) / 2

12-11

Analysis of Horner’s Method

P(x) = (… (((an * x + 1 multiplication

 an-1) * x + 1 multiplication

 an-2) * x + 1 multiplication

 … + n times

 a2) * x + 1 multiplication

 a1) * x + 1 multiplication

 a0

 n total additions

12-12

Number of operations needed in the

worst case is :

 T(n) = n + n = 2n

Analysis of Horner’s Method

12-13

Big-Oh Notation

• Analysis of Brute Force and Horner’s

methods came up with exact formulae

for the maximum number of operations

• In general, though, we want to

determine the running time, not the

number of operations: Thus, we use the

Big-Oh notation introduced earlier …

12-14

Big-Oh : Formal Definition

• Time complexity T(n) of an algorithm is O(f(n))
(we say “of the order f(n) ”) if for some positive
constant c and for all but finitely many values of n
(i.e. as n gets large)

 T(n) <= c * f(n)

• What does this mean? this gives an upper bound
on the number of operations, for sufficiently large
n

12-15

Big-Oh Analysis

• We want the complexity function f(n) to

be an easily recognized elementary

function that describes the

performance of the algorithm

12-16

Big-Oh Analysis

 Example: Polynomial Evaluation

• What is the time complexity f(n) for Horner’s

method?

• T(n) = 2n, so we say that the number of

multiplications in Horner’s method is O(n) (“of

the order of n”) and that the time complexity

of Horner’s method is O(n)

12-17

• What is the complexity f(n) for the Brute

Force method?

• Choose the highest order (dominant)

term of

 T(n) = n2/2 + 3n/2

so

 T(n) is O(n2)

Big-O Analysis

 Example: Polynomial Evaluation

12-18 1-18

Recall: Shape of Some Typical

Functions
1200

1000

800

600

400

200

70 60 50 40 30 20 10

 n

100 90 80

 t(n) = n3

 t(n) = n2

 t(n) = nlog2n

 t(n) = n

12-19

Big-Oh Example: Polynomial

Evaluation Comparison

n T(n) =2n

(Horner)

T(n)= n2/2 +

3n/2

(Brute

Force)

 f(n) = n2

5 10 20 25

10 20 65 100

20 40 230 400

100 200 5150 10000

1000 2000 501500 1000000

n is the degree of the polynomial.

12-20

Big-Oh Example: Polynomial

Evaluation
600

500

400

300

200

100

35 30 25 20 15 10 5

 T(n) = n

 T(n) = n2/2 + 3n/2

 f(n) = n2

 # of op’s

 n (degree of polynomial)

12-21

Time Complexity and Input

• Running time can depend on the size of the

input (e.g. sorting 5 items vs. 1000 items)

• Running time can also depend on the

particular input (e.g. suppose the input is

already sorted)

• This leads to several kinds of time complexity

analysis:

• Worst case analysis

• Average case analysis

• Best case analysis

12-22

Worst, Average, Best Case

• Worst case analysis: considers the maximum

of the time over all inputs of size n

• Used to find an upper bound on algorithm

performance

• Average case analysis: considers the average

of the time over all inputs of size n

• Determines the average (or expected)

performance

• Best case analysis: considers the minimum of

the time over all inputs of size n

12-23

Discussion

• What are some difficulties with average

case analysis?

• Hard to determine

• Depends on distribution of inputs

(they might not be evenly distributed)

• So, we usually use worst case analysis

(why not best case analysis?)

12-24

Example: Linear Search

• The problem: search an array A of size n to
determine whether it contains some value key

• Return array index if found, -1 if not found

Algorithm linearSearch (A, n, key)

In: Array A of size n and value key

Out: Array index of key, if key in A; -1 if key not in A

 k = 0

 while (k < n-1) and (A[k] != key) do

 k = k + 1

 if A[k] = key then return k

 else return –1.

12-25

• Total amount of work done:

• Before loop: a constant number c1 of operations

• Each time through loop: a constant number c2

of operations (comparisons, the and operation,

addition, and assignment)

• After loop: a constant number c3 of operations

• Worst case: need to examine all n array locations,

so the while loop iterates n times

• So, T(n) = c1 + c2n + c3, and the time complexity is

O(n)

12-26

• Average case for a successful search:

• Number of while loop iterations needed to find the

key? 1 or 2 or 3 or 4 … or n

• Assume that each possibility is equally likely

• Average number of iterations performed by the

while loop:

(1+2+3+ … +n)/n = (n*(n+1)/2)/n

 = (n+1)/2

• Average number of operations performed in the

average case is c1 + c3 + c2(n+1)/2. The time

complexity is therefore O(n)

12-27

Example: Binary Search

• Search a sorted array A of size n looking for

the value key

• Divide and conquer approach:

• Compute the middle index mid of the array

• If key is found at mid, we are done

• Otherwise repeat the approach on the half

of the array that might still contain key

12-28

Binary Search Algorithm

Algorithm binarySearch (A,n,key)

In: Array A of size n and value key

Out: Array index of key, if key in A; -1 otherwise

first = 0

last = n-1

do {

 mid = (first + last) / 2

 if key < A[mid] then last = mid – 1

 else first = mid + 1

 } while (A[mid] != key) and (first <= last)

 if A[mid] = key then return mid

 else return –1

12-29

• Number of operations performed before and

after the loop is a constant c1, and is

independent of n

• Number of operations performed during a

single execution of the loop is constant, c2

• Time complexity depends on the number of

times the loop is executed, so that is what we

will analyze

12-30

Worst case: key is not found in the array

• Each time through the loop, at least half of

the remaining locations are rejected:

• After first time through, <= n/2 remain

• After second time through, <= n/4 remain

• After third time through, <= n/8 remain

• After kth time through, <= n/2k remain

12-31

• Suppose in the worst case that the maximum

number of times through the loop is k; we

must express k in terms of n

• Exit the do..while loop when the number of

remaining possible locations is less than 1

(that is, when first > last): this means that

 n/2k < 1 and so n > 2k.

Taking base-2 logarithms we get, k < log2n.

Therefore, the total number of operations

performed by the algorithm is at most

c1 + c2 log2n and so the time complexity is

O(log2n) or just O(log n).

12-32

Big-Oh Analysis in General

• To determine the time complexity of an

algorithm:

• Identify the basic operation(s)

• Carefully analyze the most expensive parts

of the algorithm: loops and calls

• Express the number of operations as

f1(n) + f2(n) + …

• Identify the dominant term fi

• Then the time complexity is O(fi)

12-33

• Examples of dominant terms:

• n dominates log2(n)

• n log2(n) dominates n

• n2 dominates n log2(n)

• nm dominates nk when m > k

• an dominates nm for any a > 1 and m >= 0

• That is, for sufficiently large n,

log2(n) < n < n log2(n) < n2 < … < nm < an

 for a > 1 and m >2

12-34 1-34

Recall: Shape of Some Typical

Functions
1200

1000

800

600

400

200

70 60 50 40 30 20 10

 n

100 90 80

 f(n) = n3

 f(n) = n2

 f(n) = nlog2n

 f(n) = n

12-35

Examples of Big-Oh Analysis

• Independent nested loops:
 int x = 0;

for (int i = 1; i <= n/2; i++){
 for (int j = 1; j <= n*n; j++){
 x = x + i + j;
 }
}

• Number of iterations of inner loop is
independent of the number of iterations
of the outer loop (i.e. the value of i)

• How many times through outer loop?

• How many times through inner loop?

• Time complexity of algorithm?

12-36

• Dependent nested loops:
 int x = 0;

for (int i = 1; i <= n; i++){
 for (int j = 1; j <= 3*i; j++){
 x = x + j;
 }
}

• Number of iterations of inner loop depends
on the value of i in the outer loop

• On ith iteration of outer loop, how many
times through inner loop?

• Total number of iterations of inner loop =
sum for i running from 1 to n

• Time complexity of algorithm?

12-37

Usefulness of Big-Oh

• We can compare algorithms for
efficiency, for example:

• Linear search vs binary search

• Different sort algorithms

• Iterative vs recursive solutions
(recall Fibonacci sequence!)

• We can estimate actual run times if
we know the time complexity of the
algorithm(s) we are analyzing

12-38

Estimating Run Times

• Assuming a million operations per second on

a computer, here are some typical complexity

functions and their associated runtimes:

f(n) n = 103 n = 105 n = 106

--

 log2(n) 10-5 sec. 1.7*10-5 sec. 2*10-5 sec.

 n 10-3 sec. 0.1 sec. 1 sec.

 n log2(n) 0.01 sec. 1.7 sec. 20 sec.

 n2 1 sec. 3 hours 12 days

 n3 17 mins. 32 years 317 centuries

 2n 10285 cent. 1010000 years 10100000 years

12-39

Discussion

• Suppose we want to perform a sort that is

O(n2). What happens if the number of items to

be sorted is 100000?

• Compare this to a sort that is O(n log2(n)) . Now

what can we expect?

• Is an O(n3) algorithm practical for large n?

• What about an O(2n) algorithm, even for small

n? e.g. for a Pentium, runtimes are:

 n = 30 n = 40 n = 50 n = 60

11 sec. 3 hours 130 days 365 years

12-40

Intractable Problems

• A problem is said to be intractable if

solving it by computer is impractical

• Algorithms with time complexity O(2n)

take too long to solve even for moderate

values of n

• What are some examples we have seen?

