Analysis of
Algorithms

Analysis of Algorithms- Review

» Efficiency of an algorithm can be
measured in terms of :

* Time complexity: a measure of the amount
of time required to execute an algorithm

« Space complexity: amount of memory
required
* Which measure Is more important?

* |t often depends on the limitations of the
technology available at time of analysis (e.g.
processor speed vs memory space)

12-2

Time Complexity Analysis

* Objectives of time complexity analysis:

* To determine the efficiency of an algorithm
by computing an upper bound on the
amount of work that it performs

« To compare different algorithms before
deciding which one to implement

* Time complexity analysis for an algorithm is
Independent of the programming language
and the machine used

12-3

Time Complexity Analysis

* Time complexity expresses the
relationship between

 the size of the Iinput

 and the execution time for the
algorithm

12-4

Time Complexity Measurement

« Based on the number of basic or
primitive operations in an algorithm:

Num
Num
Num
Num
etc.

per of arithmetic operations performed
per of comparisons
per of Boolean operations performed

per of array elements accessed

 Think of this as the work done

12-5

Example: Polynomial Evaluation

Consider the polynomial
P(X) =4x* + 7x3 = 2x? + 3x1 + 6

Suppose that exponentiation is carried out using
multiplications. Two ways to evaluate this
polynomial are:

Brute force method:
P(X) = 4*X*X*X*X + T*X*X*X — 2*X*X + 3*X + 6
Horner’s method:.
PX)=((4*x+7)*x—-2)*X+3)*X +6

12-6

Method of analysis

 What are the basic operations here?
« multiplication, addition, and subtraction

* We will look at the worst case (maximum
number of operations) to get an upper bound on
the work and thus of the running time of the
algorithm

12-7

Method of analysis

General form of a polynomial of degree n is

P(x) =ax"+a,x"t+a ,x"?+..+ax!+a,

where a, Is non-zero for all n >= 0 (this Is the
worst case)

12-8

Analysis of Brute Force Method

PX)=a,*xX*x*...*x*x + n multiplications
Ay TXFXTLLTXTX O+ n-1 multiplications
Ao TXFXTLLLTXTX + n-2 multiplications
.. T
Ay, *X*X+ 2 multiplications
a; * X + 1 multiplication
A

n total additions
12-9

Number of operations needed in the worst case is
TnN)=n+(M-1)+(n-2)+...+3+2+1+n
=n(n+1)/2 +n (seebelow)

=n2/2+3n/2

Sum of first n natural numbers:

Write the n terms of the sum in forward and reverse
orders:

th)=1+ 2 + 3 +..+(n-2)+(n-1)+n
tn)=n+MN-1)+(-2)+...+ 3 + 2 +1
Add the corresponding terms:
2*t(n) = (n+1) + (n+1) + (n+1) + ... + (n+1) + (n+1) + (n+1)
=n (n+1)

Therefore, t(n) =n (n+1) /2 12-10

Analysis of Horner's Method

P(x)=(...(((a, *x +
a,) *XxX+
a,) * X+
.+t
a,) * X +
a,;) *x +

Ay

1 multiplication |
1 multiplication

1 multiplication

1 multiplication

1 multiplication

n total additions

n times

12-11

Analysis of Horner’'s Method

Number of operations needed in the
worst case s :

T(nN)=n+n=2n

12-12

Big-Oh Notation

» Analysis of Brute Force and Horner's
methods came up with exact formulae
for the maximum number of operations

 In general, though, we want to
determine the running time, not the
number of operations: Thus, we use the
Big-Oh notation introduced earlier ...

12-13

Big-Oh : Formal Definition

* Time complexity T(n) of an algorithm is O(f(n))
(we say “of the order f(n) 7) if for some positive
constant ¢ and for all but finitely many values of n
(i.e. as n gets large)

T(n) <=c *f(n)

« What does this mean? this gives an upper bound

on the number of operations, for sufficiently large
n

12-14

Big-Oh Analysis

 We want the complexity function f(n) to

be an easily recognized elementary
function that describes the

performance of the algorithm

12-15

Big-Oh Analysis
Example: Polynomial Evaluation

« What is the time complexity f(n) for Horner's
method?

* T(n) = 2n, so we say that the number of
multiplications in Horner’'s method is O(n) (“of
the order of n”) and that the time complexity
of Horner’s method is O(n)

12-16

Big-O Analysis

Example: Polynomial Evaluation

« What is the complexity f(n) for the Brute
Force method?

* Choose the highest order (dominant)
term of
T(n) =n?4/2 + 3n/2
SO
T(n) is O(n?)

12-17

Recall: Shape of Some Typical

Functions
1200

1000-

800~

600~

400

200~

t(in) =n

| I I I I I | I I I
10 20 30 40 50 60 70 80 90 100

n 12-18

Big-Oh Example: Polynomial
Evaluation Comparison

n T(n) =2n | T()=n%2+| f(n) =n?
(Horner) 3n/2
(Brute
Force)
5 10 20 25
10 20 65 100
20 40 230 400
100 200 5150 10000
1000 2000 501500 1000000

nis the degree of the polynomial.

12-19

Big-Oh Example: Polynomial

Evaluation
600
500—- f(n) — n2
of op’s 0T T(n) = n2/2 + 3n/2

300—+ :
200
100—

i T(n)=n__~

| | i |
5 10 15 20 25 30 35
n (degree of polynomial) 12-20

Time Complexity and Input

* Running time can depend on the size of the
Input (e.g. sorting 5 items vs. 1000 items)

* Running time can also depend on the
particular input (e.g. suppose the input is
already sorted)

* This leads to several kinds of time complexity
analysis:

* Worst case analysis
» Average case analysis
» Best case analysis

12-21

Worst, Average, Best Case

« Worst case analysis: considers the maximum
of the time over all inputs of size n

« Used to find an upper bound on algorithm
performance

« Average case analysis: considers the average
of the time over all inputs of size n

« Determines the average (or expected)
performance

 Best case analysis: considers the minimum of
the time over all inputs of size n

12-22

Discussion

* What are some difficulties with average
case analysis?

 Hard to determine

« Depends on distribution of inputs
(they might not be evenly distributed)

* S0, we usually use worst case analysis
(why not best case analysis?)

12-23

Example: Linear Search

» The problem: search an array A of size n to
determine whether it contains some value key

« Return array index if found, -1 if not found

Algorithm linearSearch (A, n, key)
In: Array A of size n and value key
Out: Array index of key, if key in A; -1 if key not in A
k=0
while (k < n-1) and (A[K] != key) do
k=k+1
If Ak] = key then return k
else return —1.

12-24

Total amount of work done:
- Before loop: a constant number c, of operations

- Each time through loop: a constant number c,
of operations (comparisons, the and operation,
addition, and assignment)

- After loop: a constant number c; of operations

Worst case: need to examine all n array locations,
so the while loop iterates n times

So, T(n) =c, + c,n + c5, and the time complexity is
O(n)

12-25

« Average case for a successful search:

 Number of while loop iterations needed to find the
key? lor2or3or4d...orn

« Assume that each possibility is equally likely

« Average number of iterations performed by the
while loop:
(1+2+3+ ... +n)/n = (n*(n+1)/2)/n
= (n+1)/2
« Average number of operations performed in the
average case is ¢, + C; + c,(n+1)/2. The time
complexity is therefore O(n)

12-26

Example: Binary Search

« Search a sorted array A of size n looking for
the value key

« Divide and conquer approach:
« Compute the middle index mid of the array
* If key Is found at mid, we are done

« Otherwise repeat the approach on the half
of the array that might still contain key

12-27

Binary Search Algorithm

Algorithm binarySearch (A,n,key)
In: Array A of size n and value key
Out: Array index of key, if key in A; -1 otherwise

first=0
last = n-1
do {
mid = (first + last) / 2
If key < A[mid] then last = mid — 1
else first=mid + 1
} while (A[mid] !=key) and (first <= last)

If Almid] = key then return mid
else return -1

12-28

 Number of operations performed before and
after the loop Is a constant c,, and Is
Independent of n

* Number of operations performed during a
single execution of the loop Is constant, c,

* Time complexity depends on the number of
times the loop is executed, so that is what we

will analyze

12-29

Worst case: key is not found in the array

« Each time through the loop, at least half of
the remaining locations are rejected:

 After first time through, <= n/2 remain

« After second time through, <= n/4 remain
 After third time through, <= n/8 remain
 After k'h time through, <= n/2X remain

12-30

* Suppose in the worst case that the maximum
number of times through the loop is k; we
must express k in terms of n

« Exit the do..while loop when the number of
remaining possible locations is less than 1
(that Is, when first > last): this means that
n/2k< 1 and so n > 2K,

Taking base-2 logarithms we get, k < log,n.

Therefore, the total number of operations
performed by the algorithm is at most

C, + ¢, log,n and so the time complexity Is
O(log,n) or just O(log n).

12-31

Big-Oh Analysis in General

* To determine the time complexity of an
algorithm:
* |dentify the basic operation(s)

« Carefully analyze the most expensive parts
of the algorithm: loops and calls

* EXpress the number of operations as
f,(n) +f,(n) + ...

e Identify the dominant term f,

* Then the time complexity is O(f;)

12-32

 Examples of dominant terms:
* n dominates log,(n)
n log,(n) dominates n
n2 dominates n log,(n)
n™ dominates nk when m > k
a" dominates n™ foranya>1and m >=0
* That is, for sufficiently large n,

log,(nN) <n<nlog,(n)<n?<..<npm"<a"
fora>1and m >2

12-33

Recall: Shape of Some Typical

Functions
1200

1000-

800~

600~

400

200~

f(n) =n

| I I I I I | I I I
10 20 30 40 50 60 70 80 90 100

N 12-34

Examples of Big-Oh Analysis

* Independent nested loops:
Int X = 0;
for (int1=1;1<=n/2; iI++){
for (intj =1; | <=n*n; J++){
X=X+1+];
}
}

« Number of iterations of inner loop Is
independent of the number of iterations
of the outer loop (i.e. the value of i)

 How many times through outer loop?
 How many times through inner loop?
* Time complexity of algorithm?

12-35

* Dependent nested loops:
Int X = 0;
for (inti =1;1<=n; i++){
for (int) =1;] <= 3%, |++){
X=X+];
}

}
« Number of iterations of inner loop depends
on the value of i in the outer loop

« On i" iteration of outer loop, how many
times through inner loop?

Total number of iterations of inner loop =
sum for | running from 1 to n

Time complexity of algorithm?

12-36

Usefulness of Big-Oh

 We can compare algorithms for
efficiency, for example:

» Linear search vs binary search
* Different sort algorithms

e [terative vs recursive solutions
(recall Fibonacci sequence!)

* We can estimate actual run times Iif
we know the time complexity of the
algorithm(s) we are analyzing

12-37

Estimating Run Times

« Assuming a million operations per second on
a computer, here are some typical complexity
functions and their associated runtimes:

f(n) n =103
log,(n) 10 sec.

n 103 sec.

n log,(n) 0.01 sec.
n2 1 sec.

n3 17 mins.
2" 10285 cent.

1.7*10 sec.
0.1 sec.

1.7 sec.

3 hours

32 years
1010000 years

2*10 sec.

1 sec.

20 sec.

12 days

317 centuries
10100000 yegrs

12-38

Discussion

Suppose we want to perform a sort that is
O(n?). What happens if the number of items to
be sorted is 1000007

Compare this to a sort that is O(n log,(n)) . Now
what can we expect?

Is an O(n?) algorithm practical for large n?

What about an O(2") algorithm, even for small
n? e.g. for a Pentium, runtimes are:

nNn=30 n=40 n =50 n =60
11 sec. 3 hours 130 days 365 years

12-39

Intractable Problems

* A problem is said to be intractable If
solving it by computer is impractical

 Algorithms with time complexity O(2")
take too long to solve even for moderate
values of n

 What are some examples we have seen?

12-40

