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Analysis of Algorithms- Review 

• Efficiency of an algorithm can be 
measured in terms of : 

• Time complexity: a measure of the amount 
of time required to execute an algorithm 

• Space complexity: amount of memory 
required  

• Which measure is more important? 

• It often depends on the limitations of the 
technology available at time of analysis (e.g. 
processor speed vs memory space) 
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Time Complexity Analysis 

• Objectives of time complexity analysis: 

• To determine the efficiency of an algorithm 

by computing an upper bound on the 

amount of work that it performs 

• To compare different algorithms before 

deciding which one to implement 
 

• Time complexity analysis for an algorithm is 

independent of the programming language 

and the machine used 
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• Time complexity expresses the 

relationship between 

•  the size of the input 

•  and the execution time for the 

algorithm 

Time Complexity Analysis 
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Time Complexity Measurement 

• Based on the number of basic or 
primitive operations in an algorithm: 

• Number of arithmetic operations performed 

• Number of comparisons 

• Number of Boolean operations performed 

• Number of array elements accessed 

• etc. 

• Think of this as the work done 
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Example: Polynomial Evaluation 
 Consider the polynomial 

 P(x) = 4x4 + 7x3 – 2x2 + 3x1 + 6 

 Suppose that exponentiation is carried out using 

multiplications. Two ways to evaluate this 

polynomial are:  

     Brute force method: 

        P(x) = 4*x*x*x*x + 7*x*x*x – 2*x*x + 3*x + 6 

     Horner’s method: 

        P(x) = (((4*x + 7) * x – 2) * x + 3) * x + 6 
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 Method of analysis 

 • What are the basic operations here? 

• multiplication, addition, and subtraction 

• We will look at the worst case (maximum 

number of operations) to get an upper bound on 

the work and thus of the running time of the 

algorithm 
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General form of a polynomial of degree n is 

 

  P(x) = anxn + an-1x
n-1

 + an-2x
n-2 + … + a1x

1 + a0 

 

where an is non-zero for all n >= 0 (this is the 

worst case) 

Method of analysis 
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 Analysis of Brute Force Method 

 

 P(x) = an * x * x * … * x * x  +          n multiplications 

          a n-1 * x * x * … * x * x  +        n-1 multiplications 

          a n-2 * x * x * … * x * x  +        n-2 multiplications 

          … +                                         … 

          a2 * x * x +                              2 multiplications 

          a1 * x +                                   1 multiplication 

          a0      
n total additions 
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Number of operations needed in the worst case is  

T(n) = n + (n-1) + (n-2) + … + 3 + 2 + 1 + n 

        = n (n + 1) / 2  + n (see below) 

        = n2 / 2 + 3n / 2 

Sum of first n natural numbers: 

Write the n terms of the sum in forward and reverse 

orders:     

  t(n) =  1 +   2     +   3    + … + (n-2) + (n-1) + n 

  t(n) =  n + (n-1) + (n-2) + … +   3    +    2    + 1 

Add the corresponding terms: 

 2*t(n) = (n+1) + (n+1) + (n+1) + … + (n+1) + (n+1) + (n+1) 

            = n (n+1) 

Therefore, t(n) = n (n+1) / 2 
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Analysis of Horner’s Method 

 

P(x) = ( … ((( an * x +            1 multiplication 

                       an-1) * x +        1 multiplication 

                       an-2) * x +        1 multiplication 

                      … +                                                n times 

                       a2) * x +          1 multiplication 

                       a1) * x +          1 multiplication 

                       a0 

  n total additions 
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Number of operations needed in the 

worst case is : 

 

 T(n) = n + n = 2n  

Analysis of Horner’s Method 
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Big-Oh Notation 

• Analysis of Brute Force and Horner’s 

methods came up with exact formulae 

for the maximum number of operations 

• In general, though, we want to 

determine the running time, not the 

number of operations: Thus, we use the 

Big-Oh notation introduced earlier … 
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Big-Oh : Formal Definition 

• Time complexity T(n) of an algorithm is O(f(n)) 
(we say “of the order f(n) ” ) if for some positive 
constant c and for all but finitely many values of n 
(i.e. as n gets large) 

 

   T(n) <= c * f(n) 
 

• What does this mean? this gives an upper bound 
on the number of operations, for sufficiently large 
n 
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Big-Oh Analysis 

• We  want the complexity function f(n) to 

be an easily recognized elementary 

function that describes the 

performance of the algorithm 
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Big-Oh Analysis 

 Example: Polynomial Evaluation 

• What is the time complexity f(n) for Horner’s 

method? 

• T(n) = 2n, so we say that the number of 

multiplications in Horner’s method is O(n) (“of 

the order of n”) and that the time complexity 

of Horner’s method is O(n) 
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• What is the complexity f(n) for the Brute 

Force method? 

• Choose the highest order (dominant) 

term of  

 T(n) = n2/2 + 3n/2 

so  

 T(n)  is O(n2) 

 

Big-O Analysis 

 Example: Polynomial Evaluation 
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Recall: Shape of Some Typical 

Functions 
1200 

1000 

800 

600 

400 

200 

70 60 50 40 30 20 10 

 n 

100 90 80 

 t(n) = n3 

 t(n) = n2 

 t(n) = nlog2n 

 t(n) = n 
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Big-Oh Example: Polynomial 

Evaluation Comparison 

n T(n) =2n  

(Horner) 

T(n)= n2/2 + 

3n/2  

(Brute 

Force) 

 f(n) = n2 

5  10  20  25 

10  20  65  100 

20  40  230  400 

100 200  5150  10000 

1000 2000  501500  1000000 

n is the degree of the polynomial. 
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Big-Oh Example: Polynomial 

Evaluation 
600 

500 

400 

300 

200 

100 

35 30 25 20 15 10 5 

 T(n) = n 

 T(n) = n2/2 + 3n/2 

 f(n) = n2 

 # of op’s 

 n (degree of polynomial) 
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Time Complexity and Input 

• Running time can depend on the size of the 

input (e.g. sorting 5 items vs. 1000 items) 

• Running time can also depend on the 

particular input (e.g. suppose the input is 

already sorted) 

• This leads to several kinds of time complexity 

analysis: 

• Worst case analysis 

• Average case analysis 

• Best case analysis 
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Worst, Average, Best Case 

• Worst case analysis: considers the maximum 

of the time over all inputs of size n 

• Used to find an upper bound on algorithm 

performance 

• Average case analysis: considers the average 

of the time over all inputs of size n 

• Determines the average (or expected) 

performance 

• Best case analysis: considers the minimum of 

the time over all inputs of size n 
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Discussion 
 

• What are some difficulties with average 

case analysis? 

• Hard to determine 

• Depends on distribution of inputs 

(they might not be evenly distributed) 

• So, we usually use worst case analysis 

(why not best case analysis?) 
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Example: Linear Search 

• The problem: search an array A of size n to 
determine whether it contains some value key 

• Return array index if found, -1 if not found 

Algorithm linearSearch (A, n, key) 

In: Array A of size n and value key 

Out: Array index of key, if key in A; -1 if key not in A 
 

  k = 0 

  while (k < n-1) and (A[k] != key) do  

       k = k + 1 

  if A[k] = key then return k 

  else return –1. 



12-25 

• Total amount of work done: 

• Before loop: a constant number c1 of operations 

• Each time through loop: a constant number c2 

of operations (comparisons, the and operation, 

addition, and assignment) 

• After loop: a constant number c3 of operations 

• Worst case: need to examine all n array locations, 

so the while loop iterates n times 

• So, T(n) = c1 + c2n + c3, and the time complexity is 

O(n) 
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• Average case for a successful search: 

• Number of while loop iterations needed to find the 

key? 1 or 2 or 3 or 4 … or n 

• Assume that each possibility is equally likely 

• Average number of iterations performed by the 

while loop: 

(1+2+3+ … +n)/n   = (n*(n+1)/2)/n 

     = (n+1)/2 

• Average number of operations performed in the 

average case is c1 + c3 + c2(n+1)/2. The time 

complexity is therefore O(n) 
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Example: Binary Search 

• Search a sorted array A of size n looking for 

the value key 
 

• Divide and conquer approach: 

• Compute the middle index mid of the array 

• If key is found at mid, we are done 

• Otherwise repeat the approach on the half 

of the array that might still contain key 
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Binary Search Algorithm 

Algorithm binarySearch (A,n,key) 

In: Array A of size n and value key 

Out: Array index of key, if key in A; -1 otherwise 
 

first = 0 

last = n-1 

do { 

    mid = (first + last) / 2 

    if key < A[mid] then last = mid – 1 

    else first = mid + 1 

 } while (A[mid]  != key) and (first <= last) 
 

 if A[mid] = key then return mid 

 else return –1 
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• Number of operations performed before and 

after the loop is a constant c1, and is 

independent of n 
 

• Number of operations performed during a 

single execution of the loop is constant, c2 
 

• Time complexity depends on the number of 

times the loop is executed, so that is what we 

will analyze 
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Worst case: key is not found in the array 

• Each time through the loop, at least half of 

the remaining locations are rejected: 
 

• After first time through, <= n/2 remain 

• After second time through, <= n/4 remain 

• After third time through, <= n/8 remain 

• After kth time through, <= n/2k remain 
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• Suppose in the worst case that the maximum 

number of times through the loop is k; we 

must express k in terms of n 

• Exit the do..while loop when the number of 

remaining possible locations is less than 1 

(that is, when first > last): this means that 

 n/2k < 1 and so n > 2k. 

Taking base-2 logarithms we get, k < log2n. 

Therefore, the total number of operations 

performed by the algorithm is at most  

c1 + c2 log2n and so the time complexity is 

O(log2n) or just O(log n). 
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Big-Oh Analysis in General 

• To determine the time complexity of an 

algorithm: 

• Identify the basic operation(s) 

• Carefully analyze the most expensive parts 

of the algorithm: loops and calls 

• Express the number of operations as 

f1(n) + f2(n) + … 

• Identify the dominant term fi  

• Then the time complexity is O(fi) 
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• Examples of dominant terms: 

• n dominates log2(n) 

• n log2(n) dominates n 

• n2 dominates n log2(n)  

• nm dominates nk when m > k 

• an dominates nm for any a > 1 and m >= 0 

• That is, for sufficiently large n,  

 

log2(n) < n < n log2(n) < n2 < … < nm < an 

 

 for a > 1 and m >2 
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Recall: Shape of Some Typical 

Functions 
1200 

1000 

800 

600 

400 

200 

70 60 50 40 30 20 10 

 n 

100 90 80 

 f(n) = n3 

 f(n) = n2 

 f(n) = nlog2n 

 f(n) = n 
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Examples of Big-Oh Analysis 

• Independent nested loops: 
 int x = 0; 

for (int i = 1; i <= n/2; i++){ 
  for (int j = 1; j <= n*n; j++){ 
        x = x + i + j; 
  } 
}  

• Number of iterations of inner loop is 
independent of the number of iterations 
of the outer loop (i.e. the value of i ) 

• How many times through outer loop? 

• How many times through inner loop? 

• Time complexity of algorithm? 
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• Dependent nested loops: 
 int x = 0; 

for (int i = 1; i <= n; i++){ 
  for (int j = 1; j <= 3*i; j++){ 
        x = x + j; 
  } 
}  

• Number of iterations of inner loop depends 
on the value of i in the outer loop 

• On ith iteration of outer loop, how many 
times through inner loop? 

• Total number of iterations of inner loop =  
sum for i running from 1 to n 

• Time complexity of algorithm? 
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Usefulness of Big-Oh 

• We can compare algorithms for 
efficiency, for example: 

• Linear search vs binary search 

• Different sort algorithms 

• Iterative vs recursive solutions 
(recall Fibonacci sequence!) 
 

• We can estimate actual run times if 
we know the time complexity of the 
algorithm(s) we are analyzing 
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Estimating Run Times  

• Assuming a million operations per second on 

a computer, here are some typical complexity 

functions and their associated runtimes: 
 

f(n)  n = 103  n = 105  n = 106 

------------------------------------------------------------------------------ 

 log2(n) 10-5 sec. 1.7*10-5 sec. 2*10-5 sec. 

 n  10-3 sec. 0.1 sec. 1 sec. 

 n log2(n)  0.01 sec. 1.7 sec. 20 sec. 

 n2   1 sec.   3 hours 12 days 

 n3   17 mins.  32 years  317 centuries 

 2n   10285 cent.  1010000 years  10100000 years 
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Discussion 

• Suppose we want to perform a sort that is 

O(n2). What happens if the number of items to 

be sorted is 100000? 

• Compare this to a sort that is O(n log2(n)) . Now 

what can we expect? 

• Is an O(n3) algorithm practical for large n? 

• What about an O(2n) algorithm, even for small 

n? e.g. for a Pentium, runtimes are: 
 

  n = 30  n = 40  n = 50  n = 60 

11 sec. 3 hours 130 days 365 years 
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Intractable Problems 

• A problem is said to be intractable if 

solving it by computer is impractical 

• Algorithms with time complexity O(2n) 

take too long to solve even for moderate 

values of n 

• What are some examples we have seen? 


