Analysis of Algorithms

Analysis of Algorithms- Review

- Efficiency of an algorithm can be measured in terms of :
 - Time complexity: a measure of the amount of time required to execute an algorithm
 - Space complexity: amount of memory required
- Which measure is more important?
 - It often depends on the limitations of the technology available at time of analysis (e.g. processor speed vs memory space)

Time Complexity Analysis

- Objectives of time complexity analysis:
 - To determine the efficiency of an algorithm by computing an upper bound on the amount of work that it performs
 - To compare different algorithms before deciding which one to implement
- Time complexity analysis for an algorithm is independent of the programming language and the machine used

Time Complexity Analysis

- Time complexity expresses the relationship between
 - the size of the input
 - and the execution time for the algorithm

Time Complexity Measurement

- Based on the number of basic or primitive operations in an algorithm:
 - Number of arithmetic operations performed
 - Number of comparisons
 - Number of Boolean operations performed
 - Number of array elements accessed
 - etc.
- Think of this as the work done

Example: Polynomial Evaluation

Consider the polynomial

$$P(x) = 4x^4 + 7x^3 - 2x^2 + 3x^1 + 6$$

Suppose that exponentiation is carried out using multiplications. Two ways to evaluate this polynomial are:

Brute force method

$$P(x) = 4^*x^*x^*x^*x + 7^*x^*x^*x - 2^*x^*x + 3^*x + 6$$

Horner's method:

$$P(x) = (((4*x + 7) * x - 2) * x + 3) * x + 6$$

Method of analysis

- What are the basic operations here?
 - multiplication, addition, and subtraction
- We will look at the worst case (maximum number of operations) to get an upper bound on the work and thus of the running time of the algorithm

Method of analysis

General form of a polynomial of degree n is

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x^1 + a_0$$

where a_n is non-zero for all $n \ge 0$ (this is the worst case)

Analysis of Brute Force Method

$$P(x) = a_{n} * x * x * ... * x * x + a_{n-1} * x * x * ... * x * x + a_{n-2} * x * x * ... * x * x + ... + a_{2} * x * x + a_{1} * x + a_{0}$$

n multiplications

n-1 multiplications

n-2 multiplications

. . .

2 multiplications

1 multiplication

n total additions

Number of operations needed in the worst case is

$$T(n) = n + (n-1) + (n-2) + ... + 3 + 2 + 1 + n$$

$$= n (n + 1) / 2 + n (see below)$$

$$= n^2 / 2 + 3n / 2$$

Sum of first n natural numbers:

Write the n terms of the sum in forward and reverse orders:

$$t(n) = 1 + 2 + 3 + ... + (n-2) + (n-1) + n$$

 $t(n) = n + (n-1) + (n-2) + ... + 3 + 2 + 1$

Add the corresponding terms:

$$2*t(n) = (n+1) + (n+1) + (n+1) + ... + (n+1) + (n+1) + (n+1)$$

= n (n+1)

Therefore, t(n) = n(n+1)/2

Analysis of Horner's Method

$$P(x) = (.... (((a_n * x + a_{n-1}) * x + a_{n-1}) * x + a_{n-2}) * x + + a_2) * x + a_1) * x + a_0$$

- 1 multiplication
- 1 multiplication
- 1 multiplication

- 1 multiplication
- 1 multiplication

n times

n total additions

Analysis of Horner's Method

Number of operations needed in the worst case is :

$$T(n) = n + n = 2n$$

Big-Oh Notation

- Analysis of Brute Force and Horner's methods came up with exact formulae for the maximum number of operations
- In general, though, we want to determine the running time, not the number of operations: Thus, we use the Big-Oh notation introduced earlier ...

Big-Oh: Formal Definition

Time complexity T(n) of an algorithm is O(f(n))
 (we say "of the order f(n)") if for some positive
 constant c and for all but finitely many values of n
 (i.e. as n gets large)

$$T(n) <= c * f(n)$$

 What does this mean? this gives an upper bound on the number of operations, for sufficiently large n

Big-Oh Analysis

 We want the complexity function f(n) to be an easily recognized elementary function that describes the performance of the algorithm

Big-Oh Analysis

Example: Polynomial Evaluation

- What is the time complexity f(n) for Horner's method?
 - T(n) = 2n, so we say that the number of multiplications in Horner's method is O(n) ("of the order of n") and that the time complexity of Horner's method is O(n)

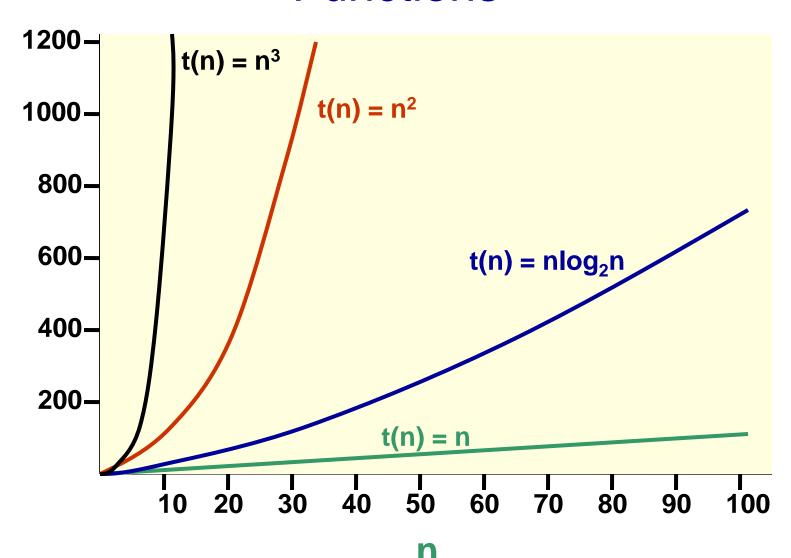
Big-O Analysis

Example: Polynomial Evaluation

- What is the complexity f(n) for the Brute Force method?
 - Choose the highest order (dominant) term of

```
T(n) = n^2/2 + 3n/2
SO
T(n) is O(n^2)
```

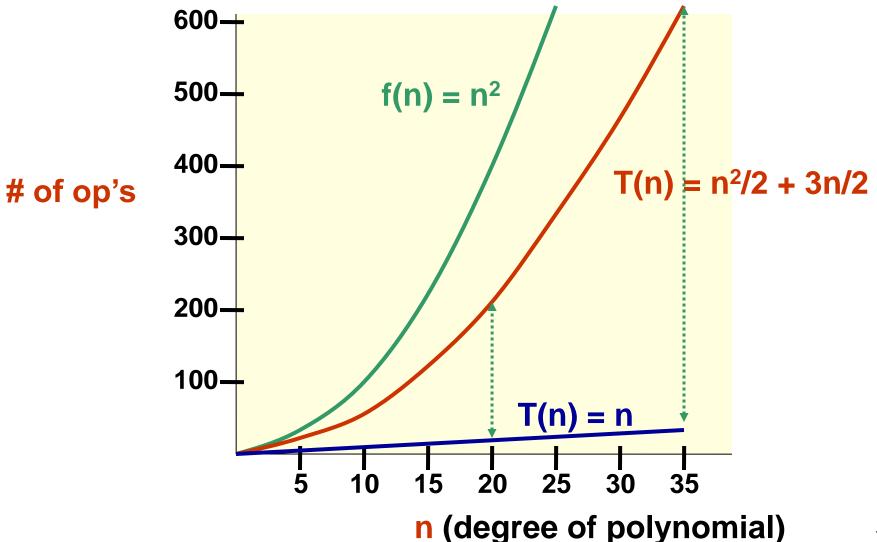
Recall: Shape of Some Typical Functions



Big-Oh Example: Polynomial Evaluation Comparison

n	T(n) =2n (Horner)	T(n)= n ² /2 + 3n/2 (Brute Force)	f(n) = n ²
5	10	20	25
10	20	65	100
20	40	230	400
100	200	5150	10000
1000	2000	501500	1000000

Big-Oh Example: Polynomial Evaluation



Time Complexity and Input

- Running time can depend on the size of the input (e.g. sorting 5 items vs. 1000 items)
- Running time can also depend on the particular input (e.g. suppose the input is already sorted)
- This leads to several kinds of time complexity analysis:
 - Worst case analysis
 - Average case analysis
 - Best case analysis

Worst, Average, Best Case

- Worst case analysis: considers the maximum of the time over all inputs of size n
 - Used to find an upper bound on algorithm performance
- Average case analysis: considers the average of the time over all inputs of size n
 - Determines the average (or expected) performance
- Best case analysis: considers the minimum of the time over all inputs of size n

Discussion

- What are some difficulties with average case analysis?
 - Hard to determine
 - Depends on distribution of inputs (they might not be evenly distributed)
- So, we usually use worst case analysis (why not best case analysis?)

Example: Linear Search

- The problem: search an array A of size n to determine whether it contains some value key
 - Return array index if found, -1 if not found

```
Algorithm linearSearch (A, n, key)
In: Array A of size n and value key
Out: Array index of key, if key in A; -1 if key not in A
k = 0
while (k < n-1) and (A[k] != key) do
k = k + 1
if A[k] = key then return k
else return -1.</pre>
```

- Total amount of work done:
 - Before loop: a constant number c₁ of operations
 - *Each time through loop*: a constant number c₂ of operations (comparisons, the **and** operation, addition, and assignment)
 - After loop: a constant number c₃ of operations
- Worst case: need to examine all n array locations, so the while loop iterates n times
- So, T(n) = c₁ + c₂n + c₃, and the time complexity is
 O(n)

- Average case for a successful search:
 - Number of while loop iterations needed to find the key? 1 or 2 or 3 or 4 ... or n
 - Assume that each possibility is equally likely
 - Average number of iterations performed by the while loop:

```
(1+2+3+ ... +n)/n = (n*(n+1)/2)/n
= (n+1)/2
```

• Average number of operations performed in the average case is $c_1 + c_3 + c_2(n+1)/2$. The time complexity is therefore O(n)

Example: Binary Search

- Search a sorted array A of size n looking for the value key
- Divide and conquer approach:
 - Compute the middle index mid of the array
 - If key is found at mid, we are done
 - Otherwise repeat the approach on the half of the array that might still contain key

Binary Search Algorithm

```
Algorithm binarySearch (A,n,key)
In: Array A of size n and value key
Out: Array index of key, if key in A; -1 otherwise
first = 0
last = n-1
do {
  mid = (first + last) / 2
  if key < A[mid] then last = mid - 1
  else first = mid + 1
} while (A[mid] != key) and (first <= last)</pre>
if A[mid] = key then return mid
else return -1
```

- Number of operations performed before and after the loop is a constant c₁, and is independent of n
- Number of operations performed during a single execution of the loop is constant, c₂
- Time complexity depends on the number of times the loop is executed, so that is what we will analyze

Worst case: key is not found in the array

- Each time through the loop, at least half of the remaining locations are rejected:
 - After first time through, <= n/2 remain
 - After second time through, <= n/4 remain
 - After third time through, <= n/8 remain
 - After kth time through, <= n/2^k remain

- Suppose in the worst case that the maximum number of times through the loop is k; we must express k in terms of n
- Exit the do..while loop when the number of remaining possible locations is less than 1 (that is, when first > last): this means that n/2^k < 1 and so n > 2^k.

Taking base-2 logarithms we get, $k < log_2 n$. Therefore, the total number of operations performed by the algorithm is at most $c_1 + c_2 log_2 n$ and so the time complexity is $O(log_2 n)$ or just O(log n).

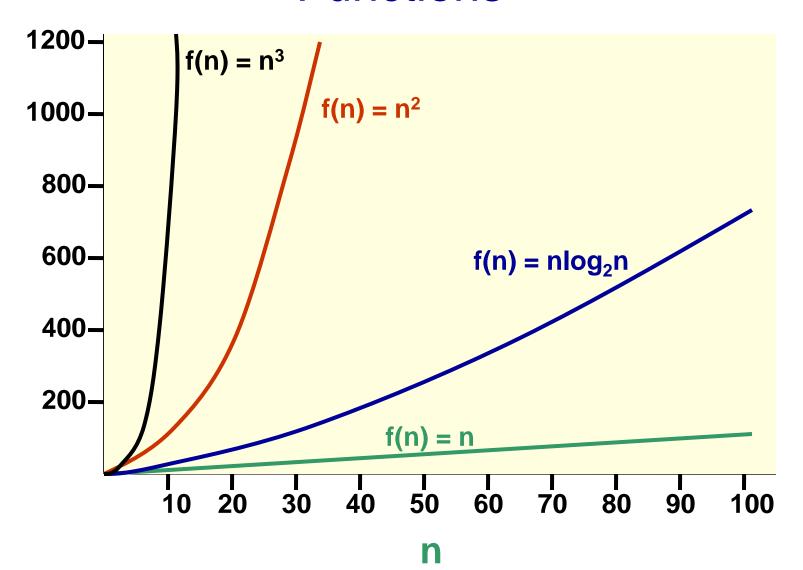
Big-Oh Analysis in General

- To determine the time complexity of an algorithm:
 - Identify the basic operation(s)
 - Carefully analyze the most expensive parts of the algorithm: loops and calls
 - Express the number of operations as
 f₁(n) + f₂(n) + ...
 - Identify the dominant term f_i
 - Then the time complexity is O(f_i)

- Examples of dominant terms:
 - n dominates log₂(n)
 - n log₂(n) dominates n
 - n² dominates n log₂(n)
 - n^m dominates n^k when m > k
 - aⁿ dominates n^m for any a > 1 and m >= 0
- That is, for sufficiently large n,

$$log_2(n) < n < n log_2(n) < n^2 < ... < n^m < a^n$$
 for a > 1 and m >2

Recall: Shape of Some Typical Functions



Examples of Big-Oh Analysis

Independent nested loops:

```
int x = 0;
for (int i = 1; i <= n/2; i++){
  for (int j = 1; j <= n*n; j++){
     x = x + i + j;
  }
}</pre>
```

- Number of iterations of inner loop is independent of the number of iterations of the outer loop (i.e. the value of i)
- How many times through outer loop?
- How many times through inner loop?
- Time complexity of algorithm?

Dependent nested loops:

```
int x = 0;
for (int i = 1; i <= n; i++){
   for (int j = 1; j <= 3*i; j++){
      x = x + j;
   }
}</pre>
```

- Number of iterations of inner loop depends
 on the value of i in the outer loop
- On ith iteration of outer loop, how many times through inner loop?
- Total number of iterations of inner loop = sum for i running from 1 to n
- Time complexity of algorithm?

Usefulness of Big-Oh

- We can compare algorithms for efficiency, for example:
 - Linear search vs binary search
 - Different sort algorithms
 - Iterative vs recursive solutions (recall Fibonacci sequence!)
- We can estimate actual run times if we know the time complexity of the algorithm(s) we are analyzing

Estimating Run Times

 Assuming a million operations per second on a computer, here are some typical complexity functions and their associated runtimes:

f(n)	n = 10 ³	n = 10 ⁵	n = 10 ⁶
log ₂ (n)	10 ⁻⁵ sec.	1.7*10 ⁻⁵ sec.	2*10 ⁻⁵ sec.
n	10 ⁻³ sec.	0.1 sec.	1 sec.
n log ₂ (n)	0.01 sec.	1.7 sec.	20 sec.
n ²	1 sec.	3 hours	12 days
n ³	17 mins.	32 years	317 centuries
2 ⁿ	10 ²⁸⁵ cent.	10 ¹⁰⁰⁰⁰ years	10 ¹⁰⁰⁰⁰⁰ years

Discussion

- Suppose we want to perform a sort that is O(n²). What happens if the number of items to be sorted is 100000?
- Compare this to a sort that is O(n log₂(n)). Now what can we expect?
- Is an O(n³) algorithm practical for large n?
- What about an O(2ⁿ) algorithm, even for small n? e.g. for a Pentium, runtimes are:

```
n = 30 n = 40 n = 50 n = 60 11 sec. 3 hours 130 days 365 years
```

Intractable Problems

- A problem is said to be intractable if solving it by computer is impractical
- Algorithms with time complexity O(2ⁿ)
 take too long to solve even for moderate
 values of n
 - What are some examples we have seen?