
Introduction to

Analysis of Algorithms

1-21-2

Objectives

• To introduce the concept of analysing

algorithms with respect to the time taken

to have them executed

• Purpose:

• To see if an algorithm is practical

• To compare different algorithms for

solving a problem

1-31-3

Introduction to

Analysis of Algorithms

• One aspect of software quality is the
efficient use of computer resources:

• CPU time

• Memory usage

• We frequently want to analyse
algorithms with respect to execution time

• Called time complexity analysis

• For example, to decide which sorting
algorithm will take less time to run

1-41-4

Time Complexity

• Analysis of time taken is based on:

• Problem size (e.g. number of items to sort)

• Primitive operations (e.g. comparison of two

values)

• What we want to analyse is the relationship

between

• The size of the problem, n

• And the time it takes to solve the problem, t(n)

• Note that t(n) is a function of n, so it

depends on the size of the problem

1-51-5

Time Complexity Functions

• This t(n) is called a time complexity

function

• What does a time complexity function

look like?

• Example of a time complexity function for

some algorithm:

t(n) = 15n2 + 45 n

• See the next slide to see how t(n)

changes as n gets bigger!

1-6

No. of items n 15n2 45n 15n2 + 45n

1 15 45 60

2 60 90 150

5 375 225 600

10 1,500 450 1,950

100 150,000 4,500 154,500

1,000 15,000,000 45,000 15,045,000

10,000 1,500,000,000 450,000 1,500,450,000

100,000 150,000,000,000 4,500,000 150,004,500,000

1,000,000 15,000,000,000,000 45,000,000 15,000,045,000,000

Example: 15n2 + 45 n

1-7

Comparison of Terms in 15n2 + 45 n

• When n is small, which term is larger?

• But, as n gets larger, note that the 15n2 term

grows more quickly than the 45n term

• We say that the n2 term is dominant in this

expression

1-81-8

Big-Oh Notation

• We wish a characterization of the time complexity
of an algorithm that is independent on any
implementation details (programming language
and computer that will execute the algorithm).

1-91-9

Big-Oh Notation

• The key issue is the asymptotic complexity of
the function or how it grows as n increases

• This is determined by the dominant term in the
growth function (the term that increases most
quickly as n increases)

• Constants become irrelevant as n increases
since we want a characterization of the time
complexity of an algorithm that is independent
of the computer that will be used to execute it.
Since different computers differ in speed by a
constant factor, constant factors are ignored
when expressing the asymptotic complexity of a
function.

1-101-10

• The asymptotic complexity of the function is

referred to as the order of the function, and is

specified by using Big-Oh notation.

• Example: O(n2) means that the time taken

by the algorithm grows like the n2 function

as n increases

• O(1) means constant time, regardless of

the size of the problem

Big-Oh Notation

1-111-11

Some Growth Functions and Their

Asymptotic Complexities

Growth Function Order

t(n) = 17 O(1)

t(n) = 20n - 4 O(n)

t(n) = 12n * log2n + 100n O(n*log2n)

t(n) = 3n2 + 5n - 2 O(n2)

t(n) = 2n + 18n2 + 3n O(2n)

1-121-12

Comparison of Some Typical Growth

Functions
1200

1000

800

600

400

200

70605040302010

n

1009080

t(n) = n3

t(n) = n2

t(n) = nlog2n

t(n) = n

1-131-13

Exercise: Asymptotic Complexities

Growth Function Order

t(n) = 5n2 + 3n ?

t(n) = n3 + log2n – 4 ?

t(n) = log2n * 10n + 5 ?

t(n) = 3n2 + 3n3 + 3 ?

t(n) = 2n + 18n100 ?

1-14

Determining Time Complexity

• Algorithms frequently contain sections

of code that are executed over and over

again, i.e. loops

• Analysing loop execution is basic to

determining time complexity

1-151-15

Analysing Loop Execution

• A loop executes a certain number of times

(say n), so the time complexity of the loop is n

times the time complexity of the body of the

loop

• Example: what is the time complexity of the

following loop, in Big-O notation?

x = 0;

for (int i=0; i<n; i++)

x = x + 1;

1-161-16

• Nested loops: the body of the outer loop

includes the inner loop

• Example: what is the time complexity of the

following loop, in Big-O notation? Read the

next set of notes from the course’s webpage

to see how the time complexity of this

algorithm and the algorithms in the following

pages are computed.

for (int i=0; i<n; i++) {

x = x + 1;

for (int j=0; j<n; j++)

y = y – 1;

}

1-171-17

More Loop Analysis Examples

x = 0;

for (int i=0; i<n; i=i+2) {

x = x + 1;

}

x = 0;

for (int i=1; i<n; i=i*2) {

x = x + 1;

}

1-181-18

x = 0;

for (int i=0; i<n; i++)

for (int j = i, j < n, j ++) {

x = x + 1;

}

More Loop Analysis Examples

1-19

Analysis of Stack Operations

• Stack operations are generally efficient,

because they all work on only one end of the

collection

• But which is more efficient: the array

implementation or the linked list

implementation?

1-20

Analysis of Stack Operations

• n is the number of items on the stack

• push operation for ArrayStack:

• O(1) if array is not full (why?)

• What would it be if the array is full? (worst
case)

• push operation for LinkedStack:

• O(1) (why?)

• pop operation for each?

• peek operation for each?

