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Objectives

• To introduce the concept of analysing

algorithms with respect to the time taken 

to have them executed

• Purpose:

• To see if an algorithm is practical

• To compare different algorithms for 

solving a problem
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Introduction to

Analysis of Algorithms

• One aspect of software quality is the 
efficient use of computer resources:

• CPU time

• Memory usage

• We frequently want to analyse
algorithms with respect to execution time

• Called time complexity analysis

• For example, to decide which sorting 
algorithm will take less time to run
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Time Complexity

• Analysis of time taken is based on:

• Problem size (e.g. number of items to sort)

• Primitive operations (e.g. comparison of two 

values)

• What we want to analyse is the relationship

between

• The size of the problem, n

• And the time it takes to solve the problem, t(n)

• Note that t(n) is a function of n, so it 

depends on the size of the problem
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Time Complexity Functions

• This t(n) is called a time complexity 

function

• What does a time complexity function 

look like?

• Example of a time complexity function for 

some algorithm:

t(n) = 15n2 + 45 n

• See the next slide to see how t(n) 

changes as n gets bigger!
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No. of items n 15n2 45n 15n2 + 45n

1 15 45 60

2 60 90 150

5 375 225 600

10 1,500 450 1,950

100 150,000 4,500 154,500

1,000 15,000,000 45,000 15,045,000

10,000 1,500,000,000 450,000 1,500,450,000

100,000 150,000,000,000 4,500,000 150,004,500,000

1,000,000 15,000,000,000,000 45,000,000 15,000,045,000,000

Example: 15n2 + 45 n 
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Comparison of Terms in 15n2 + 45 n

• When n is small, which term is larger?

• But, as n gets larger, note that the 15n2 term 

grows more quickly than the 45n term

• We say that the n2 term is dominant in this 

expression
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Big-Oh Notation

• We wish a characterization of the time complexity 
of an algorithm that is independent on any 
implementation details (programming language 
and computer that will execute the algorithm).
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Big-Oh Notation

• The key issue is the asymptotic complexity of 
the function or how it grows as n increases

• This is determined by the dominant term in the 
growth function (the term that increases most 
quickly as n increases)

• Constants become irrelevant as n increases 
since we want a characterization of the time 
complexity of an algorithm that is independent
of the computer that will be used to execute it. 
Since different computers differ in speed by  a 
constant factor, constant factors are ignored 
when expressing the asymptotic complexity of a 
function. 
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• The asymptotic complexity of the function is 

referred to as the order of the function, and is 

specified by using  Big-Oh notation.

• Example: O(n2) means that the time taken 

by the algorithm grows like the n2 function 

as n increases

• O(1) means constant time, regardless of 

the size of the problem

Big-Oh Notation
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Some Growth Functions and Their 

Asymptotic Complexities

Growth Function Order

t(n) = 17 O(1)

t(n) = 20n - 4 O(n)

t(n) = 12n * log2n + 100n O(n*log2n)

t(n) = 3n2 + 5n - 2 O(n2)

t(n) = 2n + 18n2 + 3n O(2n)
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Comparison of Some Typical Growth 

Functions
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Exercise: Asymptotic Complexities

Growth Function Order

t(n) = 5n2 + 3n ?

t(n) = n3 + log2n – 4 ?

t(n) = log2n * 10n + 5 ?

t(n) = 3n2 + 3n3 + 3 ?

t(n) = 2n + 18n100 ?
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Determining Time Complexity

• Algorithms frequently contain sections 

of code that are executed over and over 

again, i.e. loops

• Analysing loop execution is basic to 

determining time complexity
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Analysing Loop Execution

• A loop executes a certain number of times 

(say n), so the time complexity of the loop is n

times the time complexity of the body of the 

loop

• Example: what is the time complexity of the 

following loop, in Big-O notation?

x = 0;

for (int i=0; i<n; i++)

x = x + 1;
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• Nested loops: the body of the outer loop 

includes the inner loop

• Example: what is the time complexity of the 

following loop, in Big-O notation? Read the

next set of notes from the course’s webpage 

to see how the time complexity of this

algorithm and the algorithms in the following

pages are computed.

for (int i=0; i<n; i++) {

x = x + 1;

for (int j=0; j<n; j++)

y = y – 1;

}
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More Loop Analysis Examples

x = 0;

for (int i=0; i<n; i=i+2) {

x = x + 1;

}

x = 0;

for (int i=1; i<n; i=i*2) {

x = x + 1;

}
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x = 0;

for (int i=0; i<n; i++)

for (int j = i, j < n, j ++) {

x = x + 1;

}

More Loop Analysis Examples
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Analysis of Stack Operations

• Stack operations are generally efficient, 

because they all work on only one end of the 

collection

• But which is more efficient: the array 

implementation or the linked list 

implementation?
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Analysis of Stack Operations

• n is the number of items on the stack

• push operation for ArrayStack:

• O(1) if array is not full (why?)

• What would it be if the array is full? (worst 
case)

• push operation for LinkedStack:

• O(1) (why?)

• pop operation for each?

• peek operation for each?


