
Linked Data

Structures

Objectives

• Understand linked structures

• Compare linked structures to array-

based structures

• Understand implementations for linked

structures

• Understand algorithms for managing a

linked list

Array Limitations

• Fixed size

• Physically stored in consecutive memory

locations, so to insert or delete items, may

need to shift data

Linked Data Structures

• A linked data structure consists of

items that are linked to other items

• Each item points to another item

data1 data2

Memory

Addr 1 Addr 2

data3

Addr 3

Addr 2 Addr 3 null

Linked Data Structures

• A linked data structure consists of

items that are linked to other items

• Each item points to another item

data1 data2

Memory

Addr 1 Addr 2

data3

Addr 3

Addr 2 Addr 3 null

Linear Linked Data Structures

• Singly linked list: each item points to the

next item

data1 data2

Memory

Addr 1 Addr 2

data2

Addr 3

4-7

Linked Data Structures

• Doubly linked list: each item points to

the next item and to the previous item

data1 data2

Memory

Addr 1 Addr 2

data2

Addr 3

4-8

Conceptual Diagram of a Singly-

Linked List

front

4-9

Advantages of Linked Lists

• The items do not have to be stored in
consecutive memory locations, so we
can insert and delete items without
shifting data.

4-10

Advantages of Linked Lists

front

Insert new data item here

4-11

Advantages of Linked Lists

front

4-12

Advantages of Linked Lists

front

Linked lists can grow and shrink dynamically

(i.e. at run time).

4-13

Nodes

• A linked list is an sequence of items called nodes

• A node in a singly linked list consists of two fields:
• A data portion

• A link (pointer) to the next node in the structure

• The first item (node) in the linked list is accessed via
a front or head pointer

data next

front

4-14

public class LinearNode<T> {

private LinearNode<T> next;

private T dataItem;

public LinearNode() {

next = null;

dataItem = null;

}

public LinearNode (T value) {

next = null;

dataItem = value;

}

Java Class for a Node of a Singly Linked List

4-15

public LinearNode<T> getNext() {

return next;

}

public void setNext (LinearNode<T> node) {

next = node;

}

public T getDataItem() {

return dataItem;

}

public void setDataItem (T value) {

dataItem = value;

}

}

4-16

Example: Create a LinearNode

Object

• Example: create a node that contains the

integer 7

Integer intObj = new Integer(7);

LinearNode<Integer> inode =

new LinearNode<Integer> (intObj);

or

LinearNode<Integer> inode =

new LinearNode<Integer> (new Integer(7));

Wrapper class

Wrapper class needed because

a generic type cannot be primitive

4-17

Linked List of Node Objects

front

these are LinearNode

objects

these are the data objects

4-18

public class SinglyLinkedList<T> {
private LinearNode<T> front;

public SinglyLinkedList() {
front = null;

}

Java Class for a Singly Linked List

4-19

Linked List

Note: we will hereafter refer to a singly linked list just as

a “linked list”

• Traversing the linked list

• How is the first item accessed?

• The second?

• The last?

• What does the last item point to?

• We call this the null link

4-20

Discussion

• How do we get to an item’s successor?

• How do we get to an item’s

predecessor?

• How do we access, say, the 3rd item in

the linked list?

• How does this differ from an array?

4-21

Linked List Operations

We will now examine linked list operations:

• Add an item to the linked list

• We have 3 situations to consider:

• insert a node at the front

• insert a node in the middle

• insert a node at the end

4-22

Inserting a Node at the Front

front

node
node points to the new node to be

inserted, front points to the first node

of the linked list

front

node
1. Make the new node point to the

first node (i.e. the node that front

points to)

4-23

front

node
2. Make front point to the new node

(i.e the node that node points to)

4-24

Inserting a Node in the Middle

front

node
Let's insert the new node after the third

node in the linked list

front

node
1. Locate the node preceding the

insertion point , since it will have to be

modified (make current point to it)

current

insertion point

4-25

front

node
2. Make the new node point to the node

after the insertion point (i.e. the node

pointed to by the node that current

points to)

current

front

node
3. Make the node pointed to by current

point to the new node

current

X

Inserting a Node at the End

front

node

1. Locate the last node

current

Inserting a Node at the End

front

node

2. Make new node point to null

last

Inserting a Node at the End

front

node

3. Make last point to new node

current

4-29

Discussion

• Inserting a node at the front is a special

case; why?

• Is inserting a node at the end a special

case?

4-30

Algorithm insert (newNode, predecessor)

In: New node to be inserted after predecessor.

Out: {Insert newNode in linked list after predecessor; newNode

must be inserted at the front of the list if predecessor is null.}

if predecessor is null then {

newNode.setNext(front)

front = newNode

}

else {

succ = predecessor.getNext()

newNode.setNext(succ)

predecessor.setNext(newNode)

}

Algorithm for inserting a node in a singly linked list

4-31

public void insert (LinearNode<T> newNode,

LinearNode<T> predecessor) {

if (predecessor == null) {

newNode.setNext(front);

front = newNode;

}

else {

LinearNode<T> succ = predecessor.getNext();

newNode.setNext(succ);

predecessor.setNext(newNode);

}

}

Java implementation of algorithm for inserting a

node in a singly linked list

4-32

Linked List Operations

• Delete an item from the linked list

• We have 3 situations to consider:

• delete the node at the front

• delete an interior node

• delete the last node

4-33

Deleting the First Node

front

front points to the first node in the linked list,

which points to the second node

front

Make front point to the second node (i.e. the node

pointed to by the first node)

X

4-34

Deleting an Interior Node
front

1. Traverse the linked list so that current points to the node to be

deleted and previous points to the node prior to the one to be

deleted

previous current

front

2. We need to get at the node following the one to be

deleted (i.e. the node pointed to by the node that current

points to)

previous current

4-35

front

3. Make the node that previous points to, point to the node

following the one to be deleted

previous current

X

Deleting the Last Node

front

1. Find the previous to the last node in the linked

list

previous

Deleting the Last Node

front

1. Make previous point to null

previous

4-38

Discussion

• Deleting the node at the front is a

special case; why?

• Is deleting the last node a special case?

4-39

Algorithm delete (nodeToDelete)

In: node to delete

Out: true if the node was deleted, false otherwise

current = front

predecessor = null

while (current ǂ null) and (current ǂ nodeToDelete) do {

predecessor = current

current = current.getNext()

}

if current is null then return false

else {

if predecessor ǂ null then

predecessor.setNext(current.getNext())

else front = front.getNext()

return true

}

4-40

public boolean delete (LinearNode<T> nodeToDelete) {

LinearNode<T> current, predecessor;

current = front;

predecessor = null;

while ((current != null) && (current != nodeToDelete)) {

predecessor = current;

current = current.getNext();

}

if (current == null) return false;

else {

if (predecessor != null)

predecessor.setNext(current.getNext());

else front = front.getNext();

return true;

}

}

Java Implementation of Above Algorithm

4-41

Doubly Linked List

front tail

4-42

Doubly Linked List

front tail
data next

Node object

prev

4-43

public class LinearNodeDLL<T> {
private LinearNodeDLL<T> next;
private LinearNodeDLL<T> prev;

private T dataItem;

public LinearNodeDLL() {
next = null;
prev = null;
dataItem = null;

}

public LinearNodeDLL (T value) {
next = null;
prev = null;
dataItem = value;

}

Java Class for a Node of a Doubly Linked List

4-44

public LinearNodeDLL<T> getNext() {

return next;

}

public void setNext (LinearNodeDLL<T> node) {

next = node;

}

public LinearNodeDLL<T> getPrev() {

return prev;

}

public void setPrev (LinearNodeDLL<T> node) {

prev = node;

}

public T getDataItem() {

return dataItem;

}

public void setDataItem (T value) {

dataItem = value;

}

}

4-45

public class DoublyLinkedList<T> {
private LinearNodeDLL<T> front;
private LinearNodeDLL<T> tail;

public DoublyLinkedList() {
front = null;
tail = null;

}

…

}

Java Class for a Doubly Linked List

Write algorithms to add a new node to a doubly linked list

and to remove a node from a doubly linked list.

