
4-1

Linked Data

Structures

4-2

Objectives

• Describe linked structures

• Compare linked structures to array-

based structures

• Explore the techniques for managing a

linked list

• Discuss the need for a separate node

class to form linked structures

4-3

Array Limitations

• What are the limitations of an array, as

a data structure?

• Fixed size

• Physically stored in consecutive memory

locations

• To insert or delete items, may need to shift

data

4-4

Linked Data Structures

• A linked data structure consists of

items that are linked to other items

• How? each item points to another item

data1 data2

Memory

Addr 1 Addr 2

data2

Addr 3

Addr 2 Addr 3 null

4-5

Linked Data Structures

• A linked data structure consists of

items that are linked to other items

• How? each item points to another item

• Singly linked list: each item points to

the next item

• Doubly linked list: each item points to

the next item and to the previous item

4-6

Linked Data Structures

• Singly Linked List

data1 data2

Memory

Addr 1 Addr 2

data2

Addr 3

4-7

Linked Data Structures

• Doubly Linked List

data1 data2

Memory

Addr 1 Addr 2

data2

Addr 3

4-8

Conceptual Diagram of a Singly-

Linked List

front

4-9

Advantages of Linked Lists

• The items do not have to be stored in
consecutive memory locations: the
successor can be anywhere physically

• So, can insert and delete items without
shifting data

• Can increase the size of the data structure
easily

• Linked lists can grow dynamically (i.e.
at run time) – the amount of memory
space allocated can grow and shrink as
needed

4-10

Nodes
• A linked list is an ordered sequence of items

called nodes
• A node is the basic unit of representation in a

linked list

• A node in a singly linked list consists of two
fields:
• A data portion

• A link (pointer) to the next node in the structure

• The first item (node) in the linked list is
accessed via a front or head pointer
• The linked list is defined by its head (this is its

starting point)

4-11

Singly Linked List

data

data

data

head

these are nodes

head pointer "defines" the linked list

(note that it is not a node)

End of the list

4-12

Linked List

Note: we will hereafter refer to a singly linked list just as

 a “linked list”

• Traversing the linked list

• How is the first item accessed?

• The second?

• The last?

• What does the last item point to?

• We call this the null link

4-13

Discussion

• How do we get to an item’s successor?

• How do we get to an item’s

predecessor?

• How do we access, say, the 3rd item in

the linked list?

• How does this differ from an array?

4-14

Linked List Operations

We will now examine linked list operations:

• Add an item to the linked list

• We have 3 situations to consider:

• insert a node at the front

• insert a node in the middle

• insert a node at the end

• Delete an item from the linked list

• We have 3 situations to consider:

• delete the node at the front

• delete an interior node

• delete the last node

4-15

Inserting a Node at the Front

front

node
node points to the new node to be

inserted, front points to the first node

of the linked list

front

node
1. Make the new node point to the

first node (i.e. the node that front

points to)

4-16

front

node
2. Make front point to the new node

(i.e the node that node points to)

4-17

Inserting a Node in the Middle

front

node
Let's insert the new node after the third

node in the linked list

front

node
1. Locate the node preceding the

insertion point , since it will have to be

modified (make current point to it)

current

insertion point

4-18

front

node
2. Make the new node point to the node

after the insertion point (i.e. the node

pointed to by the node that current

points to)

current

front

node
3. Make the node pointed to by current

point to the new node

current

X

4-19

Discussion

• Inserting a node at the front is a special

case; why?

• Is inserting a node at the end a special

case?

4-20

Deleting the First Node

front

front points to the first node in the linked list,

which points to the second node

front

Make front point to the second node (i.e. the node

pointed to by the first node)

X

4-21

Deleting an Interior Node
front

1. Traverse the linked list so that current points to the node to be

deleted and previous points to the node prior to the one to be

deleted

previous current

front

2. We need to get at the node following the one to be

deleted (i.e. the node pointed to by the node that current

points to)

previous current

4-22

front

3. Make the node that previous points to, point to the node

following the one to be deleted

previous current

X

4-23

Discussion

• Deleting the node at the front is a

special case; why?

• Is deleting the last node a special case?

4-24

References As Links

• Recall that in Java, a reference variable
contains a reference or pointer to an
object

• We can show a reference variable obj

 as pointing to an object:

obj

• A linked structure uses references to

link one object to another

4-25

Implementation of Linked List

• In Java, a linked list is a list of node
objects, each of which consists of two
references:

• A reference to the data object

• A reference to the next node object

• The head pointer is the reference to
the linked list, i.e. to the first node object
in the linked list

• The last node has the null value as its
reference to the “next” node object

4-26

Linked List of Node Objects

head
linked list object

these are node

objects

these are the data objects

4-27

Node Objects

• For our linked list implementations, we

will define a class called LinearNode to

represent a node

• It will be defined for the generic type T

• Why is it a good idea to have separate

node class?

• Note that it is called “LinearNode” to avoid

confusion with a different class that will define

nodes for non-linear structures later

4-28

The LinearNode Class

• Attributes (instance variables):

• element: a reference to the data object

• next : a reference to the next node

• so it will be of type LinearNode

 element next

data object

4-29

The LinearNode Class

• Methods: we only need

• Getters

• Setters

4-30

public class LinearNode<T>

 {

 private LinearNode<T> next;

 private T element;

 public LinearNode(){

 next = null;

 element = null;

 }

 public LinearNode (T elem){

 next = null;

 element = elem;

 } // cont’d..

LinearNode.java

4-31

 public LinearNode<T> getNext(){

 return next;

 }

 public void setNext (LinearNode<T> node){

 next = node;

 }

 public T getElement(){

 return element;

 }

 public void setElement (T elem) {

 element = elem;

 }

}

LinearNode.java

(cont’d)

4-32

Example: Create a LinearNode

Object

• Example: create a node that contains the

integer 7

Integer intObj = new Integer(7);

LinearNode<Integer> inode =

 new LinearNode<Integer> (intObj);

or

LinearNode<Integer> inode =

 new LinearNode<Integer> (new Integer(7));

4-33

Exercise: Build a Linked List

• Exercise: create a linked list that

contains the integers 1, 2, 3, …, 10

4-34

Doubly Linked Lists

• In a doubly linked list, each node has
two links:

• A reference to the next node in the list

• A reference to the previous node in the
list

• What is the “previous” reference of the
first node in the list?

• What is the advantage of a doubly
linked list?

• What is a disadvantage?

4-35

Doubly Linked List

head tail

