
Java Memory

Management

8-2

Objectives

• Understand how the memory of a

computer is used when executing a

program

• Understand where objects, code, and

execution stack are stored in memory.

1-3

Memory Allocation in Java

• When a program is being executed,

separate areas of memory are

allocated for

• code (classes)

• objects

• execution stack

1-4

• Execution stack (also called runtime stack or call
stack)

Used to store method information needed while the
method is being executed, like

• Local variables

• Formal parameters

• Return value

• Return address

• Heap

• Used to store

• Code

• Objects

Memory Areas

1-5

Execution

stack

code and

static objects
objects

Memory Allocated to a Program

Activation

record

Heap

public static void main (…) {

…

}

public void setNext(…) {

…

}

1-6

• What happens when an object is

created by new, as in

Person friend = new Person(…);

• The reference variable friend has

memory allocated to it in the

execution stack

• The object is created using memory

in the heap

Memory Allocation in Java

1-7

Execution Stack

• Execution stack (runtime stack) is the

memory space used to store the information

needed by a method, while the method the is

being executed

• When a method is invoked, an activation

record (or call frame) for that method is

created and pushed onto the execution stack

• All the information needed during the

execution of the method is stored in an

activation record

1-8

Activation Record

for a Method

Return value

Local variables

Formal Parameters

Return address

1-9

Activation Record

• An activation record contains:

• Address to return to after method ends

• Method’s formal parameter variables

• Method’s local variables

• Return value (if any)

• Note that the values in an activation

record are accessible only while the

corresponding method is being

executed!

1-10

public class CallStackDemo {

public static void m2() {

System.out.println("Starting m2");

System.out.println("m2 calling m3");

m3();

System.out.println("m2 calling m4");

m4();

System.out.println("Leaving m2");

return;

}

public static void m3() {

System.out.println("Starting m3");

System.out.println("Leaving m3");

return;

}

1-11

public static void m4() {

System.out.println("Starting m4");

System.out.println("Leaving m4");

return;

}

public static void main(String args[]) {

System.out.println("Starting main");

System.out.println("main calling m2");

m2();

System.out.println("Leaving main");

}

}

1-12

Execution Stack for a Typical Calling Sequence

Activation

record for

main

Activation

record for

main

Activation

record for

m2

Activation

record for

main

Activation

record for

m2

Activation

record for

m3

main calls m2 m2 calls m3

1-13

Execution Stack for a Typical Calling Sequence

Activation

record for

main

Activation

record for

main

Activation

record for

m2

Activation

record for

main

Activation

record for

m2

Activation

record for

m4

Activation

record for

m2

Return from m3 m2 calls m4 Return from m4

1-14

• When the main method is invoked:

• An activation record for main is created

and pushed onto the execution stack

• When main calls the method m2:

• An activation record for m2 is created and

pushed onto the execution stack

• When m2 calls m3:

• An activation record for m3 is created and

pushed onto the execution stack

• When m3 terminates, its activation record is

popped off and control returns to m2

Execution Stack for a Typical Calling Sequence

1-15

• When m2 next calls m4:

• What happens next?

• What happens when m4 terminates?

• What happens when m2 terminates?

• What happens when main terminates?
Its activation record is popped off and
control returns to the operating system

Execution Stack for a Typical Calling Sequence

1-16

Activation Records

• We will now look at some examples of

what is in the activation record for a

method

• First for simple variables

• Then for reference variables

1-17

Example: Activation Records- Simple Variables

public class CallFrameDemo1 {

public static double square(double n){

double temp;

temp = n * n;

return temp;

}

public static void main(String args[]) {

double x = 4.5;

double y;

y = square(x);

System.out.println("Square of " + x + " is " + y);

}

}

1-18

Draw a picture of the activation records on the

execution stack:

• What will be in the activation record for the main

method?

• Address to return to in operating system

• Variable args

• Variable x

• Variable y

• What will be in the activation record for the method

square?

• Address to return to in main

• Variable n

• Variable temp

• Return value

Activation Records – Example 1

1-19

• There will be an activation record on the

execution stack for each method called. So

what other activation record(s) will be pushed

onto the execution stack for our example?

• Which activation records will be on the

execution stack at the same time?

Discussion

1-20

Heap

• Static space:

• contains one copy of the code of each

class used in the program

• also contains static objects

• Dynamic or Object space:

• Information that is stored for each object:

• values of its instance variables

• reference to its code

Execution Stack,

Call Stack, or

Runtime Stack

Heap

Static heap Dynamic heap

Code

Static

objects

Objects

Activation

Records

1-22

Object Creation

• Memory is allocated in the heap area

when an object is created using the

operator new

• Reference variables are allocated memory

in the activation records in the execution

stack

• The objects are allocated memory in the

heap

1-23

public class CallFrameDemo2 {

private static void printAll(String s1, String s2, String s3){

System.out.println(s1.toString());

System.out.println(s2.toString());

System.out.println(s3.toString());

}

public static void main(String args[]) {

String str1, str2, str3;

str1 = new String(“ string 1 ”);

str2 = new String(“ string 2 ”);

str3 = new String(“ string 3 ”);

printAll(str1, str2, str3);

}

}

1-24

Draw a picture of the execution stack and of the heap as
the above program executes:

• Activation record for main

• Activation record for String constructor for str1 – then
popped off

• Activation record for String constructor for str2 – then
popped off

• Activation record for String constructor for str3 – then
popped off

• Activation record for printAll

• Activation record for toString for str1 – then popped off

• Activation record for System.out.println – then popped
off

• etc.

Activation Records– Example 2

1-25

• What will be stored in the activation record for main?

• Address to return to in operating system

• Variable args

• Variable str1

• Initial value?

• Value after return from String constructor?

• Variable str2

• Variable str3

• What will be in the activation record for printAll?

Activation Records– Example 2

1-26

Memory Deallocation

• What happens when a method returns?

• On the execution stack:

• The activation record is popped off

when the method returns

• So, that memory is deallocated

1-27

Memory Deallocation

• What happens to objects on the heap?

• An object stays in the heap even if there is

no longer a variable referencing it!

• So, Java has automatic garbage

collection

• It regularly identifies objects which no

longer have a variable referencing

them, and deallocates that memory

