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Objectives

• Understand how the memory of a 

computer is used when executing a 

program

• Understand where objects, code, and 

execution stack are stored in memory.
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Memory Allocation in Java

• When a program is being executed, 

separate areas of memory are 

allocated for

• code (classes)

• objects

• execution stack
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• Execution stack  (also called runtime stack or call 
stack) 

Used to store method information needed while the 
method is being executed, like

• Local variables

• Formal parameters

• Return value

• Return address

• Heap

• Used to store 

• Code

• Objects

Memory Areas
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Execution 

stack

code and

static objects
objects

Memory Allocated to a Program

Activation

record

Heap

public static void main (…) {

…

}

public void setNext(…) {

… 

}



1-6

• What happens when an object is 

created by new, as in

Person friend = new Person(…);

• The reference variable friend has 

memory allocated to it in the 

execution stack

• The object is created using memory 

in the heap

Memory Allocation in Java
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Execution Stack

• Execution stack (runtime stack) is the 

memory space used to store the information 

needed by a method, while the method the is 

being executed

• When a method is invoked, an activation 

record (or call frame) for that method is 

created and pushed onto the execution stack

• All the information needed during the 

execution of the method is stored in an 

activation record
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Activation Record

for a Method

Return value

Local variables

Formal Parameters

Return address
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Activation Record

• An activation record contains:

• Address to return to after method ends

• Method’s formal parameter variables

• Method’s local variables

• Return value (if any)

• Note that the values in an activation 

record are accessible only while the 

corresponding method is being 

executed!
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public class CallStackDemo {

public static void m2( ) {

System.out.println("Starting m2");

System.out.println("m2 calling m3");

m3();

System.out.println("m2 calling m4");

m4();

System.out.println("Leaving m2");

return;

}

public static void m3( ) {

System.out.println("Starting m3");

System.out.println("Leaving m3");

return;

}
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public static void m4( ) {

System.out.println("Starting m4");

System.out.println("Leaving m4");

return;

}

public static void main(String args[ ]) {

System.out.println("Starting main");

System.out.println("main calling m2");

m2( );

System.out.println("Leaving main");

}

}
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Execution Stack for a Typical Calling Sequence

Activation

record for

main

Activation

record for

main

Activation

record for

m2

Activation

record for

main

Activation

record for
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Activation

record for

m3

main calls m2 m2 calls m3
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Execution Stack for a Typical Calling Sequence

Activation

record for

main

Activation
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main
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main
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Return from m3 m2 calls m4 Return from m4
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• When the main method is invoked:

• An activation record for main is created 

and pushed onto the execution stack

• When main calls the method m2:

• An activation record for m2 is created and 

pushed onto the execution stack

• When m2 calls m3:

• An activation record for m3 is created and 

pushed onto the execution stack

• When m3 terminates, its activation record is 

popped off and control returns to m2

Execution Stack for a Typical Calling Sequence
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• When m2 next calls m4:

• What happens next?

• What happens when m4 terminates?

• What happens when m2 terminates?

• What happens when main terminates? 
Its activation record is popped off and 
control returns to the operating system

Execution Stack for a Typical Calling Sequence
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Activation Records

• We will now look at some examples of 

what is in the activation record for a 

method

• First for simple variables

• Then for reference variables
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Example: Activation Records- Simple Variables

public class CallFrameDemo1 {

public static double square(double n){

double temp;

temp = n * n;

return temp;

}

public static void main(String args[ ]) {

double x = 4.5;

double y;

y = square(x);

System.out.println("Square of " + x + " is " + y);

}

}
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Draw a picture of the activation records on the 

execution stack:

• What will be in the activation record for the main

method?

• Address to return to in operating system

• Variable args

• Variable x

• Variable y

• What will be in the activation record for the method 

square?

• Address to return to in main

• Variable n

• Variable temp

• Return value

Activation Records – Example 1
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• There will be an activation record on the 

execution stack for each method called. So 

what other activation record(s) will be pushed 

onto the execution stack for our example?

• Which activation records will be on the 

execution stack at the same time?

Discussion
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Heap

• Static space: 

• contains one copy of the code of each 

class used in the program

• also contains static objects

• Dynamic or Object space: 

• Information that is stored for each object:

• values of its instance variables

• reference to its code



Execution Stack,

Call Stack, or

Runtime Stack

Heap

Static heap Dynamic heap

Code 

Static 

objects

Objects

Activation

Records
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Object Creation

• Memory is allocated in the heap area 

when an object is created using the 

operator new

• Reference variables are allocated memory 

in the activation records in the execution 

stack

• The objects are allocated memory in the 

heap
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public class CallFrameDemo2 {

private static void printAll(String s1, String s2, String s3){

System.out.println(s1.toString( ));

System.out.println(s2.toString( ));

System.out.println(s3.toString( ));

}

public static void main(String args[ ]) {

String str1, str2, str3;

str1 = new String(“ string 1 ”);

str2 = new String(“ string 2 ”);

str3 = new String(“ string 3 ”);

printAll(str1, str2, str3);

}

}
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Draw a picture of the execution stack and of the heap as 
the above program executes: 

• Activation record for main

• Activation record for String constructor for str1 – then 
popped off

• Activation record for String constructor for str2 – then 
popped off

• Activation record for String constructor for str3 – then 
popped off

• Activation record for printAll

• Activation record for toString for str1 – then popped off

• Activation record for System.out.println – then popped 
off 

• etc.

Activation Records– Example 2



1-25

• What will be stored in the activation record for main? 

• Address to return to in operating system

• Variable args

• Variable str1

• Initial value?

• Value after return from String constructor?

• Variable str2

• Variable str3

• What will be in the activation record for printAll?

Activation Records– Example 2



1-26

Memory Deallocation

• What happens when a method returns?

• On the execution stack:

• The activation record is popped off 

when the method returns

• So, that memory is deallocated
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Memory Deallocation

• What happens to objects on the heap?

• An object stays in the heap even if there is 

no longer a variable referencing it!

• So, Java has automatic garbage 

collection

• It regularly identifies objects which no 

longer have a  variable referencing 

them, and deallocates that memory


