
Recursion
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Objectives

• Understand the underlying concepts of 

recursion

• Examine recursive methods and 

understand their processing steps

• Explain when recursion should and 

should not be used

• Demonstrate the use of recursion to 

solve problems
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Recursive Definitions

• Recursion: defining something in 

terms of itself 

• Recursive definition

• Uses the word or concept being 

defined in the definition itself

• Includes a base case that is defined 

directly, without self-reference



8-4

• Example: define a group of people

• Iterative definition:

a group is 2 people, or 3 people, or 4 people, 

or …

• Recursive definition:

a group is: 2 people

or, a group is: a group plus one more person

• The concept of a group is used to define 

itself!

• The base case is “a group is 2 people”

Recursive Definitions
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Exercise

• Give an iterative and a recursive 

definition of  a sequence of characters

Iterative definition: a sequence of 

characters is ?

Recursive definition: a sequence of 

characters is ?
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Recursive Definitions

• Example: consider the following list of 
numbers:

24, 88, 40, 37

A list of numbers can be defined 
recursively:

list of numbers:

• is a number

• or a number  comma list of numbers
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Tracing a Recursive Definition

• To determine whether the sequence
24, 88, 40, 37 is a list of numbers, apply the 
recursive portion of the definition:

24 is a number and “,” is a comma,
so 24, 88, 40, 37 is a list of numbers
if and only if 88, 40, 37 is a list of 
numbers

• Apply the same part of the definition to the 
sequence 88, 40, 37

• …

• Eventually, we will need to apply the base 
case of the definition
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number comma

24 , is 88, 40, 37 a list?

number comma

88 , is 40, 37 a list?

number comma

40 , is 37 a list?

number

37 
Base case from the 

definition has been 

applied here

Yes: 24, 88, 40, 37

is a list

Is 24, 88, 40, 37 a list?

General 

portion of 

definition 

has been 

applied 

here
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• A recursive definition consists of two 
parts:

• The base case: this defines the “simplest” 
case or starting point

• The recursive part: this is the “general 
case”, that describes all the other cases in 
terms of “smaller” versions of itself

• Why is a base case needed? 

• A definition without a non-recursive part 
causes infinite recursion

Recursive Definitions
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More Recursive Definitions

• Mathematical formulas can often be expressed 
recursively

• Example: the formula for factorial is:

for any positive integer n, n! (n factorial) is 
defined to be the product of all integers 
between 1 and n inclusive.

• Express this definition recursively

1!  =  1 (the base case)

n!  =  n * (n-1)!     for n>=2
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Discussion

• Recursion is an alternative to iteration, 

and it is a very powerful problem-solving 

technique

• What is iteration? Repetition, as in a loop

• What is recursion? Defining something in 

terms of a smaller or simpler version of 

itself (why smaller/simpler? )
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Recursive Programming

• Recursion is a programming technique in 

which a method can call itself to solve a 

problem

• A method in Java that invokes itself is 

called a recursive method, and must 

contain code for

• the base case, and

• the recursive part
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Example of Recursive Programming

• Consider the problem of computing the 
sum of all the numbers between 1 and n
inclusive

e.g. if n is 5, the sum is

1 + 2 + 3 + 4 + 5

• How can this problem be expressed 
recursively?
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Recursive Definition of Sum of 1 to n

Σ
k = 1

n

k =   n + Σ
k = 1

n-1

This reads as:

the sum of 1 to n is equal to n + the sum of 1 to n-1

What is the base case?

the sum of 1 to 1 = 1

k for n >1
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Trace Recursive Definition of Sum of 1 to n

Σ
k = 1

n

k   =   n +Σ
k = 1

n-1

k   =   n + (n-1) + Σ
k = 1

n-2

k

= n + (n-1) + (n-2) + Σ
k = 1

n-3

k

= n + (n-1) + (n-2) +  … + 3 + 2 + 1
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A Recursive Method for Sum

public static int sum (int n) {

int res;

if (n == 1)

res = 1;

else

res = n + sum (n-1);

return res;

}
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How Recursion Works

• What happens when a method is invoked?

• An activation record, or call frame or frame is 
created

• The activation record is pushed onto the 
runtime stack or execution stack

• Every time that the algorithm makes a recursive 
call a new activation record is created and pushed 
into the execution stack.
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Activation Record

• An activation record contains:

• Address to return to after method ends

• Method’s formal parameter variables

• Method’s local variables

• Return value (if any)

Return address

Return value

Local variables

Formal Parameters
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How Recursion Works

• When does the recursive method stop calling 
itself?

• When the base case is reached

• What happens then?

• That last invocation of the method 
completes, its activation record is popped 
off the execution stack, and control returns 
to the method that invoked it
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• But which method invoked it? The previous 

invocation of the recursive method:

• This previous invocation of the method 

then completes, its activation record is 

popped off the execution stack, and control 

returns to the method that invoked it,

• … and so on until we get back to the first 

invocation of the recursive method

How Recursion Works
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Consider the following program

public static void main (String[] args) {

int result = sum(4); // Addr 1

}

When the program is executed an activation record is 

created for method main. This activation record stores:

• The return address: in this case is the address of the 

part of the java virtual machine where the invocation 

to method main is made

• The variable result

• The parameter args

How Recursion Works
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At this point the execution stack looks like the following 

figure. We assume that no parameter is passed to main, 

so args is null. Variable result has no value assigned to 

it yet, so we left its value blank. Addr VM denotes the 

address of the instruction of the virtual machine where 

method main was invoked.

result args return address

null
Addr

VM

Execution Stack

Activation 

record for

method

main
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Once the activation record for method main has been 

created and the values of the parameters and return 

address have been stored in it, the execution of method 

main starts. The first and only statement of main invokes 

method sum. This causes the creation of another activation 

record, which is pushed into the execution stack:

result args return address

null
Addr

VM

Execution Stack

Activation 

record for

method

sum
res n ret. address ret. value
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Since method main invokes sum(4), the value of 4 is stored 

in n, the return address is the address of the statement

int result = sum(4); // Addr 1

where method sum is invoked. We will call this address, 

Addr 1. The value of variable res and the return value have 

not been computed yet:

result args return address

null
Addr

VM

Execution Stack

Activation 

record for

method

sum
res n ret. address ret. value

Addr 14
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Once the activation record has been created, the execution 

of method sum starts. Since n > 1, the statement

res = n + sum (n-1); // Addr 2

is executed. As this statement invokes method sum, a new 

activation record is created and pushed into the stack:

result args return address

null
Addr

VM

Execution Stack

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value
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Since n = 4, the value of the parameter of method sum in

res = n + sum (n-1); // Addr 2

is equal to 3; thus we store the value 3 in n. The return 

address now is the address of the above statement, which we 

call Addr 2. This address is stored in the activation record:

result args return address

null
Addr

VM

Execution Stack

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value
3 Addr 2
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Then two more invocations to method sum with parameters 

2 and 1 are made. After the last invocation the execution 

stack looks like this:

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

1 Addr 2

res ret. address ret. value

res ret. address ret. value
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Since in the last invocation to method sum the value of n is 

1 then method sum sets the value of res to 1 (base case):

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

1 Addr 2

res ret. address ret. value

res ret. address ret. value

n

n

1



8-29

Then the method returns the value 1. The return value is 

stored in the activation record; the method ends …

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

1 Addr 2

res ret. address ret. value

res ret. address ret. value

n

n

1 1
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and hence the activation record is popped off the execution 

stack. The return address Addr 2 is recovered and 

execution continues at the statement in that address:

res = n + sum (n-1); // Addr 2

This call just finished and it returned the value 1, hence res

takes value n + sum(n-1) = 2 + 1 = 3.

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

1 Addr 2

res ret. address ret. value

res ret. address ret. value

n

n

1 1

3
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Then the method returns the value 3. The activation record 

is popped off the stack and execution continues at the 

statement at address Addr 2, i.e.

res = n + sum (n-1); // Addr 2

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

res ret. address ret. valuen
3 3
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now res takes value

res = n + sum (n-1) = 3 + 3 = 6

and the value

6 is returned

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

res ret. address ret. valuen
3 3

6 6
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The activation record is popped off the stack and res takes 

value 6 + 4 = 10. This value is returned to statement in 

address Addr 1 and the activation record is popped off the 

stack:

public static void main (String[] args) {

int result = sum(4); // Addr 1

}

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 26 6

10 10
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public static void main (String[] args) {

int result = sum(4); // Addr 1

}

Note that we are back in method main. The value returned 

by sum(4) is stored in result and finally method main ends.

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 26 6

10 10

10
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The last activation record is popped off the stack and control 

returns to the virtual machine. Note that the value returned 

by invoking sum(4) is 10.

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 26 6

10 10

10
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Discussion:

Recursion vs. Iteration

• Just because we can use recursion to 

solve a problem, doesn't mean we 

should!

• Would you use iteration or recursion to 

compute the sum of 1 to n? Why?
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Exercise: Factorial Method

• Write an iterative method to compute 
the factorial of a positive integer.

• Write a recursive method to compute 
the factorial of a positive integer.

• Which do you think is faster, the 
recursive or the iterative version of the 
factorial method?
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Example: Fibonacci Numbers

• Fibonacci numbers are those of this sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

• We can define these numbers recursively:

fib(1) = 1

fib(2) = 1

fib(n) = fib(n – 1) + fib(n – 2) for n > 2

• This sequence is also known as the solution to 
the Multiplying Rabbits Problem ☺
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Multiplying Rabbits Problem

How many rabbits will there be?

We have a pair of rabbits…and are born after 1 month
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Multiplying Rabbits Problem

How many rabbits will there be?

Rabbits can mate after 1 month …and are born after 1 month

1 1

1 month

Number of rabbits
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Multiplying Rabbits Problem

How many rabbits will there be after n months?

Rabbits can mate after 1 month and babies are born1 month after mating

1 1

1 month
1 month

2

Number of rabbits



8-42

Multiplying Rabbits Problem

How many rabbits will there be after n months?

Rabbits can mate after 1 month and babies are born 1 month after mating

1 1

1 month
1 month

2

Number of rabbits
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Multiplying Rabbits Problem

How many rabbits will there be?

Rabbits can mate after 1 month and are born after 1 month

1 1

1 month
1 month

2

1 month

3

Number of rabbits
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Multiplying Rabbits Problem

1
1

1 month
1 month 1 month

3 1
 m

o
n
th

5
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Multiplying Rabbits Problem

1
1

1 month
1 month

2

1 month

3 1
 m

o
n
th

5
1 month8
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This is the number of rabbits after 1 month, 2

months, 3 months, and so on:

1, 1, 2, 3, 5, 8, …13, 21, 34, 55, 89, …

This sequence is called the Fibonnaci Sequence
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A Recursive Algorithm for 

computing Fibonacci Numbers

// Precondition (assumption) : n > = 1

public static int rfib (int n) {

if ((n == 1) || (n == 2))

return 1;

else

return rfib(n – 1) + rfib(n – 2);

}
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An Iterative Method for Computing 

Fibonacci Numbers
public static int ifib(int n) {

if ((n == 1) || (n == 2))

return 1;

else {

int prev = 1, current = 1, next;

for (int i = 3; i <= n; i ++) {

next = prev + current;

prev = current;

current = next;

}

return next;

}
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Discussion

• Which solution looks simpler, the recursive or 

the iterative?

• Which one is (much) faster?

Why?

• Note: recursive and iterative code for 

computing Fibonacci numbers are posted in 

the Sample Code page of the course’s 

website - try running them both, and time 

them!
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Evaluating fib(6)

1

11

11

1

11

fib(6)

2

223

35

8

o

j

h

g

ffib(2)+fib(1)e

fib(3)     +     fib(2)
d

fib(4)         +           fib(3)c

fib(5)                    +                        fib(4)
b

a

n
fib(2)+fib(1)

m

fib(3)     +     fib(2)
l

k

Letters: Give order of calls

Numbers: Return values

i

fib(2)+fib(1)
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Application of Recursive 

Algorithms

• Quicksort for sorting a set of values

• Backtracking for solving problems in Artificial 

Intelligence

• Formal language definitions such as Backus-

Naur Form (BNF)

<ident> ::= <letter> | <ident><letter> |

<ident><digit> 

etc.

• Evaluating algebraic expressions

• etc.



8-52

Recursive Solutions
• For some problems, recursive solutions are 

simpler and more elegant than iterative 
solutions

• Classic example: Towers of Hanoi

• Puzzle invented in the 1880’s by a 
mathematician named Edouard Lucas

• Based on a legend for which there are many 
versions, but they all involve monks or 
priests moving 64 gold disks from one place 
to another. When their task is completed, the 
world will end …
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The Towers of Hanoi

• The Towers of Hanoi puzzle consists of

• Three vertical pegs

• Several disks that slide onto the pegs

• The disks are of varying sizes, initially 
placed on one peg with the largest disk 
on the bottom and increasingly smaller 
disks on top
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The Towers of Hanoi Puzzle
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The Towers of Hanoi

• Goal: move all of the disks from the 

leftmost peg to the rightmost one following 

these rules:

• Only one disk can be moved at a time

• A disk cannot be placed on top of a smaller 

disk

• All disks must be on some peg (except for the 

one in transit)
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Towers of Hanoi Solution: 4 disks

A B C A B C

A B C A B C

Goal: Move the disks from peg A to peg C
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A B C A B C

A B C A B C



8-58

A B C A B C

A B C A B C
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A B C A B C

A B C A B C
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Towers of Hanoi Recursive Solution

• To move a stack of n disks from the original 
peg to the destination peg:

• move the topmost n-1 disks from the original 
peg to the extra peg

• move the largest disk from the original peg 
to the destination peg

• move the n-1 disks from the extra peg to the 
destination peg

• The base case occurs when moving just the 
smallest disk (that is, when solving the 1-disk
problem)
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Algorithm hanoi(iniPeg,destPeg,tmpPeg,n)

In: initial peg, destination peg, third peg, number of disks

Out: Sequence of moves to put all disks in destPeg.

if n = 1 then Print (“Move disk from” iniPeg “to” destPeg)

else {

hanoi(iniPeg,tmpPeg,destPeg,n-1)

Print (“Move disk from” iniPeg “to” destPeg

hanoi(tmpPeg,destPeg,tmpPeg,n-1)

}
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public void hanoi(int iniPeg, int destPeg, int tmpPeg, int n) {

if (n == 1) 

System.out.println(“Move disk from ” + iniPeg + “ to ” destPeg);

else {

hanoi(iniPeg,tmpPeg,destPeg,n-1)

System.out.println (“Move disk from ” + iniPeg + “ to ” destPeg);

hanoi(tmpPeg,destPeg,tmpPeg,n-1)

}

Java Implementation



8-63

• Note that the number of moves increases 

exponentially as the number of disks 

increases!

• So, how long will it take for the monks to 

move those 64 disks?

• The recursive solution is simple and elegant to 

express (and program); an iterative solution to 

this problem is much more complex

Towers of Hanoi Recursive Solution


