
Recursion

8-2

Objectives

• Understand the underlying concepts of

recursion

• Examine recursive methods and

understand their processing steps

• Explain when recursion should and

should not be used

• Demonstrate the use of recursion to

solve problems

8-3

Recursive Definitions

• Recursion: defining something in

terms of itself

• Recursive definition

• Uses the word or concept being

defined in the definition itself

• Includes a base case that is defined

directly, without self-reference

8-4

• Example: define a group of people

• Iterative definition:

a group is 2 people, or 3 people, or 4 people,

or …

• Recursive definition:

a group is: 2 people

or, a group is: a group plus one more person

• The concept of a group is used to define

itself!

• The base case is “a group is 2 people”

Recursive Definitions

8-5

Exercise

• Give an iterative and a recursive

definition of a sequence of characters

Iterative definition: a sequence of

characters is ?

Recursive definition: a sequence of

characters is ?

8-6

Recursive Definitions

• Example: consider the following list of
numbers:

24, 88, 40, 37

A list of numbers can be defined
recursively:

list of numbers:

• is a number

• or a number comma list of numbers

8-7

Tracing a Recursive Definition

• To determine whether the sequence
24, 88, 40, 37 is a list of numbers, apply the
recursive portion of the definition:

24 is a number and “,” is a comma,
so 24, 88, 40, 37 is a list of numbers
if and only if 88, 40, 37 is a list of
numbers

• Apply the same part of the definition to the
sequence 88, 40, 37

• …

• Eventually, we will need to apply the base
case of the definition

8-8

number comma

24 , is 88, 40, 37 a list?

number comma

88 , is 40, 37 a list?

number comma

40 , is 37 a list?

number

37
Base case from the

definition has been

applied here

Yes: 24, 88, 40, 37

is a list

Is 24, 88, 40, 37 a list?

General

portion of

definition

has been

applied

here

8-9

• A recursive definition consists of two
parts:

• The base case: this defines the “simplest”
case or starting point

• The recursive part: this is the “general
case”, that describes all the other cases in
terms of “smaller” versions of itself

• Why is a base case needed?

• A definition without a non-recursive part
causes infinite recursion

Recursive Definitions

8-10

More Recursive Definitions

• Mathematical formulas can often be expressed
recursively

• Example: the formula for factorial is:

for any positive integer n, n! (n factorial) is
defined to be the product of all integers
between 1 and n inclusive.

• Express this definition recursively

1! = 1 (the base case)

n! = n * (n-1)! for n>=2

8-11

Discussion

• Recursion is an alternative to iteration,

and it is a very powerful problem-solving

technique

• What is iteration? Repetition, as in a loop

• What is recursion? Defining something in

terms of a smaller or simpler version of

itself (why smaller/simpler?)

8-12

Recursive Programming

• Recursion is a programming technique in

which a method can call itself to solve a

problem

• A method in Java that invokes itself is

called a recursive method, and must

contain code for

• the base case, and

• the recursive part

8-13

Example of Recursive Programming

• Consider the problem of computing the
sum of all the numbers between 1 and n
inclusive

e.g. if n is 5, the sum is

1 + 2 + 3 + 4 + 5

• How can this problem be expressed
recursively?

8-14

Recursive Definition of Sum of 1 to n

Σ
k = 1

n

k = n + Σ
k = 1

n-1

This reads as:

the sum of 1 to n is equal to n + the sum of 1 to n-1

What is the base case?

the sum of 1 to 1 = 1

k for n >1

8-15

Trace Recursive Definition of Sum of 1 to n

Σ
k = 1

n

k = n +Σ
k = 1

n-1

k = n + (n-1) + Σ
k = 1

n-2

k

= n + (n-1) + (n-2) + Σ
k = 1

n-3

k

= n + (n-1) + (n-2) + … + 3 + 2 + 1

8-16

A Recursive Method for Sum

public static int sum (int n) {

int res;

if (n == 1)

res = 1;

else

res = n + sum (n-1);

return res;

}

8-17

How Recursion Works

• What happens when a method is invoked?

• An activation record, or call frame or frame is
created

• The activation record is pushed onto the
runtime stack or execution stack

• Every time that the algorithm makes a recursive
call a new activation record is created and pushed
into the execution stack.

1-18

Activation Record

• An activation record contains:

• Address to return to after method ends

• Method’s formal parameter variables

• Method’s local variables

• Return value (if any)

Return address

Return value

Local variables

Formal Parameters

8-19

How Recursion Works

• When does the recursive method stop calling
itself?

• When the base case is reached

• What happens then?

• That last invocation of the method
completes, its activation record is popped
off the execution stack, and control returns
to the method that invoked it

8-20

• But which method invoked it? The previous

invocation of the recursive method:

• This previous invocation of the method

then completes, its activation record is

popped off the execution stack, and control

returns to the method that invoked it,

• … and so on until we get back to the first

invocation of the recursive method

How Recursion Works

8-21

Consider the following program

public static void main (String[] args) {

int result = sum(4); // Addr 1

}

When the program is executed an activation record is

created for method main. This activation record stores:

• The return address: in this case is the address of the

part of the java virtual machine where the invocation

to method main is made

• The variable result

• The parameter args

How Recursion Works

8-22

At this point the execution stack looks like the following

figure. We assume that no parameter is passed to main,

so args is null. Variable result has no value assigned to

it yet, so we left its value blank. Addr VM denotes the

address of the instruction of the virtual machine where

method main was invoked.

result args return address

null
Addr

VM

Execution Stack

Activation

record for

method

main

8-23

Once the activation record for method main has been

created and the values of the parameters and return

address have been stored in it, the execution of method

main starts. The first and only statement of main invokes

method sum. This causes the creation of another activation

record, which is pushed into the execution stack:

result args return address

null
Addr

VM

Execution Stack

Activation

record for

method

sum
res n ret. address ret. value

8-24

Since method main invokes sum(4), the value of 4 is stored

in n, the return address is the address of the statement

int result = sum(4); // Addr 1

where method sum is invoked. We will call this address,

Addr 1. The value of variable res and the return value have

not been computed yet:

result args return address

null
Addr

VM

Execution Stack

Activation

record for

method

sum
res n ret. address ret. value

Addr 14

8-25

Once the activation record has been created, the execution

of method sum starts. Since n > 1, the statement

res = n + sum (n-1); // Addr 2

is executed. As this statement invokes method sum, a new

activation record is created and pushed into the stack:

result args return address

null
Addr

VM

Execution Stack

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

8-26

Since n = 4, the value of the parameter of method sum in

res = n + sum (n-1); // Addr 2

is equal to 3; thus we store the value 3 in n. The return

address now is the address of the above statement, which we

call Addr 2. This address is stored in the activation record:

result args return address

null
Addr

VM

Execution Stack

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value
3 Addr 2

8-27

Then two more invocations to method sum with parameters

2 and 1 are made. After the last invocation the execution

stack looks like this:

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

1 Addr 2

res ret. address ret. value

res ret. address ret. value

8-28

Since in the last invocation to method sum the value of n is

1 then method sum sets the value of res to 1 (base case):

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

1 Addr 2

res ret. address ret. value

res ret. address ret. value

n

n

1

8-29

Then the method returns the value 1. The return value is

stored in the activation record; the method ends …

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

1 Addr 2

res ret. address ret. value

res ret. address ret. value

n

n

1 1

8-30

and hence the activation record is popped off the execution

stack. The return address Addr 2 is recovered and

execution continues at the statement in that address:

res = n + sum (n-1); // Addr 2

This call just finished and it returned the value 1, hence res

takes value n + sum(n-1) = 2 + 1 = 3.

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

1 Addr 2

res ret. address ret. value

res ret. address ret. value

n

n

1 1

3

8-31

Then the method returns the value 3. The activation record

is popped off the stack and execution continues at the

statement at address Addr 2, i.e.

res = n + sum (n-1); // Addr 2

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

res ret. address ret. valuen
3 3

8-32

now res takes value

res = n + sum (n-1) = 3 + 3 = 6

and the value

6 is returned

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 2

2 Addr 2

res ret. address ret. valuen
3 3

6 6

8-33

The activation record is popped off the stack and res takes

value 6 + 4 = 10. This value is returned to statement in

address Addr 1 and the activation record is popped off the

stack:

public static void main (String[] args) {

int result = sum(4); // Addr 1

}

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 26 6

10 10

8-34

public static void main (String[] args) {

int result = sum(4); // Addr 1

}

Note that we are back in method main. The value returned

by sum(4) is stored in result and finally method main ends.

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 26 6

10 10

10

8-35

The last activation record is popped off the stack and control

returns to the virtual machine. Note that the value returned

by invoking sum(4) is 10.

result args return address

null
Addr

VM

res n ret. address ret. value

Addr 14

Top

res n ret. address ret. value

3 Addr 26 6

10 10

10

8-36

Discussion:

Recursion vs. Iteration

• Just because we can use recursion to

solve a problem, doesn't mean we

should!

• Would you use iteration or recursion to

compute the sum of 1 to n? Why?

8-37

Exercise: Factorial Method

• Write an iterative method to compute
the factorial of a positive integer.

• Write a recursive method to compute
the factorial of a positive integer.

• Which do you think is faster, the
recursive or the iterative version of the
factorial method?

8-38

Example: Fibonacci Numbers

• Fibonacci numbers are those of this sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

• We can define these numbers recursively:

fib(1) = 1

fib(2) = 1

fib(n) = fib(n – 1) + fib(n – 2) for n > 2

• This sequence is also known as the solution to
the Multiplying Rabbits Problem ☺

8-39

Multiplying Rabbits Problem

How many rabbits will there be?

We have a pair of rabbits…and are born after 1 month

8-40

Multiplying Rabbits Problem

How many rabbits will there be?

Rabbits can mate after 1 month …and are born after 1 month

1 1

1 month

Number of rabbits

8-41

Multiplying Rabbits Problem

How many rabbits will there be after n months?

Rabbits can mate after 1 month and babies are born1 month after mating

1 1

1 month
1 month

2

Number of rabbits

8-42

Multiplying Rabbits Problem

How many rabbits will there be after n months?

Rabbits can mate after 1 month and babies are born 1 month after mating

1 1

1 month
1 month

2

Number of rabbits

8-43

Multiplying Rabbits Problem

How many rabbits will there be?

Rabbits can mate after 1 month and are born after 1 month

1 1

1 month
1 month

2

1 month

3

Number of rabbits

8-44

Multiplying Rabbits Problem

1
1

1 month
1 month 1 month

3 1
 m

o
n
th

5

8-45

Multiplying Rabbits Problem

1
1

1 month
1 month

2

1 month

3 1
 m

o
n
th

5
1 month8

8-46

This is the number of rabbits after 1 month, 2

months, 3 months, and so on:

1, 1, 2, 3, 5, 8, …13, 21, 34, 55, 89, …

This sequence is called the Fibonnaci Sequence

8-47

A Recursive Algorithm for

computing Fibonacci Numbers

// Precondition (assumption) : n > = 1

public static int rfib (int n) {

if ((n == 1) || (n == 2))

return 1;

else

return rfib(n – 1) + rfib(n – 2);

}

8-48

An Iterative Method for Computing

Fibonacci Numbers
public static int ifib(int n) {

if ((n == 1) || (n == 2))

return 1;

else {

int prev = 1, current = 1, next;

for (int i = 3; i <= n; i ++) {

next = prev + current;

prev = current;

current = next;

}

return next;

}

8-49

Discussion

• Which solution looks simpler, the recursive or

the iterative?

• Which one is (much) faster?

Why?

• Note: recursive and iterative code for

computing Fibonacci numbers are posted in

the Sample Code page of the course’s

website - try running them both, and time

them!

8-50

Evaluating fib(6)

1

11

11

1

11

fib(6)

2

223

35

8

o

j

h

g

ffib(2)+fib(1)e

fib(3) + fib(2)
d

fib(4) + fib(3)c

fib(5) + fib(4)
b

a

n
fib(2)+fib(1)

m

fib(3) + fib(2)
l

k

Letters: Give order of calls

Numbers: Return values

i

fib(2)+fib(1)

8-51

Application of Recursive

Algorithms

• Quicksort for sorting a set of values

• Backtracking for solving problems in Artificial

Intelligence

• Formal language definitions such as Backus-

Naur Form (BNF)

<ident> ::= <letter> | <ident><letter> |

<ident><digit>

etc.

• Evaluating algebraic expressions

• etc.

8-52

Recursive Solutions
• For some problems, recursive solutions are

simpler and more elegant than iterative
solutions

• Classic example: Towers of Hanoi

• Puzzle invented in the 1880’s by a
mathematician named Edouard Lucas

• Based on a legend for which there are many
versions, but they all involve monks or
priests moving 64 gold disks from one place
to another. When their task is completed, the
world will end …

8-53

The Towers of Hanoi

• The Towers of Hanoi puzzle consists of

• Three vertical pegs

• Several disks that slide onto the pegs

• The disks are of varying sizes, initially
placed on one peg with the largest disk
on the bottom and increasingly smaller
disks on top

8-54

The Towers of Hanoi Puzzle

8-55

The Towers of Hanoi

• Goal: move all of the disks from the

leftmost peg to the rightmost one following

these rules:

• Only one disk can be moved at a time

• A disk cannot be placed on top of a smaller

disk

• All disks must be on some peg (except for the

one in transit)

8-56

Towers of Hanoi Solution: 4 disks

A B C A B C

A B C A B C

Goal: Move the disks from peg A to peg C

8-57

A B C A B C

A B C A B C

8-58

A B C A B C

A B C A B C

8-59

A B C A B C

A B C A B C

8-60

Towers of Hanoi Recursive Solution

• To move a stack of n disks from the original
peg to the destination peg:

• move the topmost n-1 disks from the original
peg to the extra peg

• move the largest disk from the original peg
to the destination peg

• move the n-1 disks from the extra peg to the
destination peg

• The base case occurs when moving just the
smallest disk (that is, when solving the 1-disk
problem)

8-61

Algorithm hanoi(iniPeg,destPeg,tmpPeg,n)

In: initial peg, destination peg, third peg, number of disks

Out: Sequence of moves to put all disks in destPeg.

if n = 1 then Print (“Move disk from” iniPeg “to” destPeg)

else {

hanoi(iniPeg,tmpPeg,destPeg,n-1)

Print (“Move disk from” iniPeg “to” destPeg

hanoi(tmpPeg,destPeg,tmpPeg,n-1)

}

8-62

public void hanoi(int iniPeg, int destPeg, int tmpPeg, int n) {

if (n == 1)

System.out.println(“Move disk from ” + iniPeg + “ to ” destPeg);

else {

hanoi(iniPeg,tmpPeg,destPeg,n-1)

System.out.println (“Move disk from ” + iniPeg + “ to ” destPeg);

hanoi(tmpPeg,destPeg,tmpPeg,n-1)

}

Java Implementation

8-63

• Note that the number of moves increases

exponentially as the number of disks

increases!

• So, how long will it take for the monks to

move those 64 disks?

• The recursive solution is simple and elegant to

express (and program); an iterative solution to

this problem is much more complex

Towers of Hanoi Recursive Solution

