
Recursion
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Objectives

• Explain the underlying concepts of 

recursion

• Examine recursive methods and unravel 

their processing steps

• Explain when recursion should and 

should not be used

• Demonstrate the use of recursion to 

solve problems
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Recursive Definitions

• Recursion: defining something in 

terms of itself 

• Recursive definition

• Uses the word or concept being 

defined in the definition itself

• Includes a base case that is defined 

directly, without self-reference
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• Example: define a group of people

• Iterative definition:

a group is 2 people, or 3 people, or 4 people, 

or …

• Recursive definition:

a group is: 2 people

or, a group is: a group plus one more person

• The concept of a group is used to define 

itself!

• The base case is “a group is 2 people”

Recursive Definitions
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Exercise

• Give an iterative and a recursive 

definition of  a sequence of characters

e.g. CS 1027

• Iterative definition: a sequence of 

characters is ?

• Recursive definition: a sequence of 

characters is ?
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Recursive Definitions

• Example: consider the following list of 
numbers:

24, 88, 40, 37

It can be defined recursively:

list of numbers:is a number
or a number  comma list of numbers

i.e. It is defined to be a single number, or a 
number followed by a comma followed by a 
list of numbers
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Tracing a Recursive Definition

• To determine whether the sequence
24, 88, 40, 37 is a list of numbers, apply the 
recursive portion of the definition:

24 is a number and “,” is a comma,
so 24, 88, 40, 37 is a list of numbers
if and only if
88, 40, 37 is a list of numbers

• Apply the same part of the definition to the 
sequence 88, 40, 37

• …

• Eventually, we’ll need to apply the base case 
of the definition
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number comma list??

24 , 88, 40, 37

number comma list??

88 , 40, 37

number comma list??

40 , 37

number

37 
Base case from the 

definition has been 

applied here

Yes: 24, 88, 40, 37

is a list

list??

24, 88, 40, 37

General 

portion of 

definition 

has been 

applied 

here
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• A recursive definition consists of two 
parts:

• The base case: this defines the “simplest” 
case or starting point

• The recursive part: this is the “general 
case”, that describes all the other cases in 
terms of “smaller” versions of itself

• Why is a base case needed? 

• A definition without a non-recursive part 
causes infinite recursion

Recursive Definitions
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Discussion
• We can get information from our 

recursive definition by starting at the 

base case, for example:

• 2 people form a group (base case)

• So, 2 + 1 or 3 people form a group 

• So, 3 + 1 or 4 people form a group

• etc.

• We can also get information by ending

at the base case, for example:

• Do 4 people form a group?
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More Recursive Definitions

• Mathematical formulas are often expressed 
recursively

• Example: the formula for factorial

for any positive integer n, n! (n factorial) is 
defined to be the product of all integers 
between 1 and n inclusive

• Express this definition recursively

1!  =  1 (the base case)

n!  =  n * (n-1)!     for n>=2

• Now determine the value of 4!
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Discussion

• Recursion is an alternative to iteration, 

and can be a very powerful problem-

solving technique

• What is iteration? repetition, as in a loop

• What is recursion? defining something in 

terms of a smaller or simpler version of 

itself (why smaller/simpler? )
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Recursive Programming

• Recursion is a programming technique in 

which a method can call itself to solve a 

problem

• A method in Java that invokes itself is 

called a recursive method, and must 

contain code for

• The base case

• The recursive part
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Example of Recursive Programming

• Consider the problem of computing the 
sum of all the numbers between 1 and n
inclusive

e.g. if n is 5, the sum is

1 + 2 + 3 + 4 + 5

• How can this problem be expressed 
recursively?

Hint: the above sum is the same as
5 + 4 + 3 + 2 + 1
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Recursive Definition of Sum of 1 to n

Σ
k = 1

n

k =   n + Σ
k = 1

n-1

This reads as:

the sum of 1 to n = n + the sum of 1 to n-1

What is the base case?

the sum of 1 to 1 = 1

k for n >1
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Trace Recursive Definition of Sum of 

1 to n

Σ
k = 1

n

k   =   n +Σ
k = 1

n-1

k   =   n + (n-1) +Σ
k = 1

n-2

k

= n + (n-1) + (n-2) + Σ
k = 1

n-3

k

= n + (n-1) + (n-2) +  … + 3 + 2 + 1
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A Recursive Method for Sum

public static int sum (int n)

{

int result;

if (n == 1)

result = 1;

else

result = n + sum (n-1);

return result;

}
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How Recursion Works

• What happens when any method is 
called?

• A call frame or activation record is set up

• That call frame is pushed onto the runtime 
stack or execution stack

• What happens when a recursive method 
“calls itself ”? It’s actually just like calling 
any other method!

• An activation record is set up

• That activation record ame is pushed onto 
the execution stack
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How Recursion Works

• Note: For a recursive method, how 
many copies of the code are there?

• Just one! (like any other method)

• When does the recursive method stop 
calling itself?

• When the base case is reached

• What happens then?

• That invocation of the method completes, 
its activation record is popped off the 
execution stack, and control returns to the 
method that invoked it



8-20

• But which method invoked it? the 

previous invocation of the recursive 

method

• This method now completes, its activation 

record is popped off the execution stack, 

and control returns to the method that 

invoked it

• And so on until we get back to the first 

invocation of the recursive method

How Recursion Works
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Tracing int k = sum(4);
Call is made from main( ).

Bottom activation record on the execution stack is for the main 

program; all others are for calls to sum( ). The stack is redrawn at 

each call to sum( ), and just before each return.

Main program call returns to the OS; all others return to the 

addition in n + sum(n-1).

k? k?

resn4 ?

k?

resn4 ?

resn3 ?

k?

resn4 ?

resn3 ?

resn2 ?
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k?

resn4 ?

resn3 ?

resn2 ?

resn1 ?

k?

resn4 ?

resn3 ?

resn2 ?

resn1 1

k?

resn4 ?

resn3 ?

resn2 3

k?

resn4 ?

resn3 6

Value returned by 

previous call is 

added to n to yield 

this call’s return 

value

Base case occurs 

here; no new 

recursive call
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k?

resn4 10

k10

Value returned by 

previous call is 

added to n to yield 

this call’s return 

value

Result of

int k = sum(4);

has been stored
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Discussion:

Recursion vs. Iteration

• Just because we can use recursion to 

solve a problem, doesn't mean we 

should!

• Would you use iteration or recursion to 

compute the sum of 1 to n? Why?
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Exercise: Factorial Method

• Write an iterative method to compute 
the factorial of a positive integer.

• Write a recursive method to compute 
the factorial of a positive integer.

• Which do you think is faster, the 
recursive or the iterative version of the 
factorial method?
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Example: Fibonacci Numbers

• Fibonacci numbers are those of the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

• Define them recursively:

fib(1) = 1

fib(2) = 1

fib(n) = fib(n – 1) + fib(n – 2) for n > 2

• This sequence is also known as the solution to 
the Multiplying Rabbits Problem ☺
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A Recursive Method for Fibonacci 

Numbers

// precondition (assumption) : n > = 1

public static int rfib (int n) {

if ((n == 1) || (n == 2))

return 1;

else

return rfib(n – 1) + rfib(n – 2);

}
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An Iterative Method for Fibonacci 

Numbers
public static int ifib(int n) {

if ((n == 1) || (n == 2))

return 1;

else {

int prev = 1, current = 1, next;

for (int i = 3; i <= n; i ++) {

next = prev + current;

prev = current;

current = next;

}

return next;

}
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Discussion

• Which solution looks simpler, the 

recursive or the iterative?

• Which one is (much) faster?

Why?

• Note: recursive and iterative code for 

Fibonacci are both online - try running 

them both, and time them!
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Evaluating fib(6)

1

11

11

1

11

fib(6)

2

223

35

8

o

j

h

g

ffib(2)+fib(1)e

fib(3)     +     fib(2)
d

fib(4)         +           fib(3)c

fib(5)                    +                        fib(4)
b

a

n
fib(2)+fib(1)

m

fib(3)     +     fib(2)
l

k

Letters: Give order of calls

Numbers: Return values

i

fib(2)+fib(1)
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Useful Recursive Solutions

• Quicksort for sorting a set of values

• Backtracking problems in Artificial Intelligence

• Formal language definitions such as Backus-

Naur Form (BNF)

<ident> ::= <letter> | <ident><letter> |

<ident><digit> 

etc.

• Evaluating algebraic expressions in postfix 

form (how did we do this earlier?)

• etc.
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Recursive Solutions
• For some problems, recursive solutions are 

simpler and more elegant than iterative 
solutions

• Classic example: Towers of Hanoi

• Puzzle invented in the 1880’s by a 
mathematician named Edouard Lucas

• Based on a legend for which there are many 
versions, but they all involve monks or 
priests moving 64 gold disks from one place 
to another. When their task is completed, the 
world will end …
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The Towers of Hanoi

• The Towers of Hanoi puzzle is made up 
of

• Three vertical pegs

• Several disks that slide onto the pegs

• The disks are of varying size, initially 
placed on one peg with the largest disk 
on the bottom and increasingly smaller 
disks on top
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The Towers of Hanoi Puzzle
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The Towers of Hanoi

• Goal: move all of the disks from one peg to 

another following these rules:

• Only one disk can be moved at a time

• A disk cannot be placed on top of a smaller 

disk

• All disks must be on some peg (except for the 

one in transit)
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Towers of Hanoi Solution: 4 disks

A B C A B C

A B C A B C

Goal: Move the disks from peg A to peg C
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A B C A B C

A B C A B C
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A B C A B C

A B C A B C
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A B C A B C

A B C A B C
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Towers of Hanoi Recursive Solution

• To move a stack of n disks from the original 
peg to the destination peg:

• move the topmost n-1 disks from the original 
peg to the extra peg

• move the largest disk from the original peg 
to the destination peg

• move the n-1 disks from the extra peg to the 
destination peg

• The base case occurs when moving just the 
smallest disk (that is, when solving the 1-disk
problem)
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• Note that the number of moves increases 

exponentially as the number of disks 

increases!

• So, how long will it take for the monks to 

move those 64 disks?

• The recursive solution is simple and elegant to 

express (and program); an iterative solution to 

this problem is much more complex

• See SolveTowers.java, TowersOfHanoi.java

Towers of Hanoi Recursive Solution
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Analyzing Recursive Algorithms

• Analyzing a loop:

determine the number of operations in each 

iteration of the loop and add it over the 

number of times the loop is executed

• Recursive analysis is similar:

determine the number of operations in the 

method body and add it over the number of 

times the recursive call is made)
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• Example: Towers of Hanoi

• Size of the problem? The number of disks n

• Operations per call? A constant number

• Except for the base case, each recursive call 

results in calling itself twice more

• So, to solve a problem of n disks, we make

2n-1 disk moves

• Therefore the algorithm is O(2n), which is 

called exponential complexity

Analyzing Recursive Algorithms



8-44

Exercise

What is the time complexity of:

1. the recursive factorial method?

2. the iterative factorial method?

3. the recursive Fibonacci method?

4. the iterative Fibonacci method?


