
Recursion

8-2

Objectives

• Explain the underlying concepts of

recursion

• Examine recursive methods and unravel

their processing steps

• Explain when recursion should and

should not be used

• Demonstrate the use of recursion to

solve problems

8-3

Recursive Definitions

• Recursion: defining something in

terms of itself

• Recursive definition

• Uses the word or concept being

defined in the definition itself

• Includes a base case that is defined

directly, without self-reference

8-4

• Example: define a group of people

• Iterative definition:

a group is 2 people, or 3 people, or 4 people,

or …

• Recursive definition:

a group is: 2 people

or, a group is: a group plus one more person

• The concept of a group is used to define

itself!

• The base case is “a group is 2 people”

Recursive Definitions

8-5

Exercise

• Give an iterative and a recursive

definition of a sequence of characters

e.g. CS 1027

• Iterative definition: a sequence of

characters is ?

• Recursive definition: a sequence of

characters is ?

8-6

Recursive Definitions

• Example: consider the following list of
numbers:

24, 88, 40, 37

It can be defined recursively:

list of numbers:is a number
or a number comma list of numbers

i.e. It is defined to be a single number, or a
number followed by a comma followed by a
list of numbers

8-7

Tracing a Recursive Definition

• To determine whether the sequence
24, 88, 40, 37 is a list of numbers, apply the
recursive portion of the definition:

24 is a number and “,” is a comma,
so 24, 88, 40, 37 is a list of numbers
if and only if
88, 40, 37 is a list of numbers

• Apply the same part of the definition to the
sequence 88, 40, 37

• …

• Eventually, we’ll need to apply the base case
of the definition

8-8

number comma list??

24 , 88, 40, 37

number comma list??

88 , 40, 37

number comma list??

40 , 37

number

37
Base case from the

definition has been

applied here

Yes: 24, 88, 40, 37

is a list

list??

24, 88, 40, 37

General

portion of

definition

has been

applied

here

8-9

• A recursive definition consists of two
parts:

• The base case: this defines the “simplest”
case or starting point

• The recursive part: this is the “general
case”, that describes all the other cases in
terms of “smaller” versions of itself

• Why is a base case needed?

• A definition without a non-recursive part
causes infinite recursion

Recursive Definitions

8-10

Discussion
• We can get information from our

recursive definition by starting at the

base case, for example:

• 2 people form a group (base case)

• So, 2 + 1 or 3 people form a group

• So, 3 + 1 or 4 people form a group

• etc.

• We can also get information by ending

at the base case, for example:

• Do 4 people form a group?

8-11

More Recursive Definitions

• Mathematical formulas are often expressed
recursively

• Example: the formula for factorial

for any positive integer n, n! (n factorial) is
defined to be the product of all integers
between 1 and n inclusive

• Express this definition recursively

1! = 1 (the base case)

n! = n * (n-1)! for n>=2

• Now determine the value of 4!

8-12

Discussion

• Recursion is an alternative to iteration,

and can be a very powerful problem-

solving technique

• What is iteration? repetition, as in a loop

• What is recursion? defining something in

terms of a smaller or simpler version of

itself (why smaller/simpler?)

8-13

Recursive Programming

• Recursion is a programming technique in

which a method can call itself to solve a

problem

• A method in Java that invokes itself is

called a recursive method, and must

contain code for

• The base case

• The recursive part

8-14

Example of Recursive Programming

• Consider the problem of computing the
sum of all the numbers between 1 and n
inclusive

e.g. if n is 5, the sum is

1 + 2 + 3 + 4 + 5

• How can this problem be expressed
recursively?

Hint: the above sum is the same as
5 + 4 + 3 + 2 + 1

8-15

Recursive Definition of Sum of 1 to n

Σ
k = 1

n

k = n + Σ
k = 1

n-1

This reads as:

the sum of 1 to n = n + the sum of 1 to n-1

What is the base case?

the sum of 1 to 1 = 1

k for n >1

8-16

Trace Recursive Definition of Sum of

1 to n

Σ
k = 1

n

k = n +Σ
k = 1

n-1

k = n + (n-1) +Σ
k = 1

n-2

k

= n + (n-1) + (n-2) + Σ
k = 1

n-3

k

= n + (n-1) + (n-2) + … + 3 + 2 + 1

8-17

A Recursive Method for Sum

public static int sum (int n)

{

int result;

if (n == 1)

result = 1;

else

result = n + sum (n-1);

return result;

}

8-18

How Recursion Works

• What happens when any method is
called?

• A call frame or activation record is set up

• That call frame is pushed onto the runtime
stack or execution stack

• What happens when a recursive method
“calls itself ”? It’s actually just like calling
any other method!

• An activation record is set up

• That activation record ame is pushed onto
the execution stack

8-19

How Recursion Works

• Note: For a recursive method, how
many copies of the code are there?

• Just one! (like any other method)

• When does the recursive method stop
calling itself?

• When the base case is reached

• What happens then?

• That invocation of the method completes,
its activation record is popped off the
execution stack, and control returns to the
method that invoked it

8-20

• But which method invoked it? the

previous invocation of the recursive

method

• This method now completes, its activation

record is popped off the execution stack,

and control returns to the method that

invoked it

• And so on until we get back to the first

invocation of the recursive method

How Recursion Works

8-21

Tracing int k = sum(4);
Call is made from main().

Bottom activation record on the execution stack is for the main

program; all others are for calls to sum(). The stack is redrawn at

each call to sum(), and just before each return.

Main program call returns to the OS; all others return to the

addition in n + sum(n-1).

k? k?

resn4 ?

k?

resn4 ?

resn3 ?

k?

resn4 ?

resn3 ?

resn2 ?

8-22

k?

resn4 ?

resn3 ?

resn2 ?

resn1 ?

k?

resn4 ?

resn3 ?

resn2 ?

resn1 1

k?

resn4 ?

resn3 ?

resn2 3

k?

resn4 ?

resn3 6

Value returned by

previous call is

added to n to yield

this call’s return

value

Base case occurs

here; no new

recursive call

8-23

k?

resn4 10

k10

Value returned by

previous call is

added to n to yield

this call’s return

value

Result of

int k = sum(4);

has been stored

8-24

Discussion:

Recursion vs. Iteration

• Just because we can use recursion to

solve a problem, doesn't mean we

should!

• Would you use iteration or recursion to

compute the sum of 1 to n? Why?

8-25

Exercise: Factorial Method

• Write an iterative method to compute
the factorial of a positive integer.

• Write a recursive method to compute
the factorial of a positive integer.

• Which do you think is faster, the
recursive or the iterative version of the
factorial method?

8-26

Example: Fibonacci Numbers

• Fibonacci numbers are those of the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

• Define them recursively:

fib(1) = 1

fib(2) = 1

fib(n) = fib(n – 1) + fib(n – 2) for n > 2

• This sequence is also known as the solution to
the Multiplying Rabbits Problem ☺

8-27

A Recursive Method for Fibonacci

Numbers

// precondition (assumption) : n > = 1

public static int rfib (int n) {

if ((n == 1) || (n == 2))

return 1;

else

return rfib(n – 1) + rfib(n – 2);

}

8-28

An Iterative Method for Fibonacci

Numbers
public static int ifib(int n) {

if ((n == 1) || (n == 2))

return 1;

else {

int prev = 1, current = 1, next;

for (int i = 3; i <= n; i ++) {

next = prev + current;

prev = current;

current = next;

}

return next;

}

8-29

Discussion

• Which solution looks simpler, the

recursive or the iterative?

• Which one is (much) faster?

Why?

• Note: recursive and iterative code for

Fibonacci are both online - try running

them both, and time them!

8-30

Evaluating fib(6)

1

11

11

1

11

fib(6)

2

223

35

8

o

j

h

g

ffib(2)+fib(1)e

fib(3) + fib(2)
d

fib(4) + fib(3)c

fib(5) + fib(4)
b

a

n
fib(2)+fib(1)

m

fib(3) + fib(2)
l

k

Letters: Give order of calls

Numbers: Return values

i

fib(2)+fib(1)

8-31

Useful Recursive Solutions

• Quicksort for sorting a set of values

• Backtracking problems in Artificial Intelligence

• Formal language definitions such as Backus-

Naur Form (BNF)

<ident> ::= <letter> | <ident><letter> |

<ident><digit>

etc.

• Evaluating algebraic expressions in postfix

form (how did we do this earlier?)

• etc.

8-32

Recursive Solutions
• For some problems, recursive solutions are

simpler and more elegant than iterative
solutions

• Classic example: Towers of Hanoi

• Puzzle invented in the 1880’s by a
mathematician named Edouard Lucas

• Based on a legend for which there are many
versions, but they all involve monks or
priests moving 64 gold disks from one place
to another. When their task is completed, the
world will end …

8-33

The Towers of Hanoi

• The Towers of Hanoi puzzle is made up
of

• Three vertical pegs

• Several disks that slide onto the pegs

• The disks are of varying size, initially
placed on one peg with the largest disk
on the bottom and increasingly smaller
disks on top

8-34

The Towers of Hanoi Puzzle

8-35

The Towers of Hanoi

• Goal: move all of the disks from one peg to

another following these rules:

• Only one disk can be moved at a time

• A disk cannot be placed on top of a smaller

disk

• All disks must be on some peg (except for the

one in transit)

8-36

Towers of Hanoi Solution: 4 disks

A B C A B C

A B C A B C

Goal: Move the disks from peg A to peg C

8-37

A B C A B C

A B C A B C

8-38

A B C A B C

A B C A B C

8-39

A B C A B C

A B C A B C

8-40

Towers of Hanoi Recursive Solution

• To move a stack of n disks from the original
peg to the destination peg:

• move the topmost n-1 disks from the original
peg to the extra peg

• move the largest disk from the original peg
to the destination peg

• move the n-1 disks from the extra peg to the
destination peg

• The base case occurs when moving just the
smallest disk (that is, when solving the 1-disk
problem)

8-41

• Note that the number of moves increases

exponentially as the number of disks

increases!

• So, how long will it take for the monks to

move those 64 disks?

• The recursive solution is simple and elegant to

express (and program); an iterative solution to

this problem is much more complex

• See SolveTowers.java, TowersOfHanoi.java

Towers of Hanoi Recursive Solution

8-42

Analyzing Recursive Algorithms

• Analyzing a loop:

determine the number of operations in each

iteration of the loop and add it over the

number of times the loop is executed

• Recursive analysis is similar:

determine the number of operations in the

method body and add it over the number of

times the recursive call is made)

8-43

• Example: Towers of Hanoi

• Size of the problem? The number of disks n

• Operations per call? A constant number

• Except for the base case, each recursive call

results in calling itself twice more

• So, to solve a problem of n disks, we make

2n-1 disk moves

• Therefore the algorithm is O(2n), which is

called exponential complexity

Analyzing Recursive Algorithms

8-44

Exercise

What is the time complexity of:

1. the recursive factorial method?

2. the iterative factorial method?

3. the recursive Fibonacci method?

4. the iterative Fibonacci method?

