The Tree ADT

Objectives

- Define trees as data structures
- Discuss tree traversal algorithms
- Discuss a binary tree implementation

Trees

- A tree is a nonlinear abstract data type that stores elements in a hierarchy.
- Examples in real life:
- Family tree
- Table of contents of a book
- Class inheritance hierarchy in Java
- Computer file system (folders and subfolders)
- Decision trees

Example: Computer File System

Example: Table of Contents

Example: Java’s Class Hierarchy

Tree Definition

- A tree is a set of elements that either
- it is empty, or
- it has a distinguished element called the root and zero or more trees (called subtrees of the root)
-What kind of definition is this?
-What is the base case?
- What is the recursive part?

Tree Definition

Tree Terminology

- Nodes: the elements in the tree
- Edges: connections between nodes
- Root: the distinguished element that is the origin of the tree
- There is only one root node in a tree
- Empty tree has no nodes and no edges

Tree Terminology

Tree Terminology

- Parent or predecessor: the node directly above another node in the hierarchy
- A node can have only one parent
- Child or successor: a node directly below another node in the hierarchy
- Siblings: nodes that have the same parent
- Ancestors of a node: its parent, the parent of its parent, etc.
- Descendants of a node: its children, the children of its children, etc.

Tree Terminology

Nodes F, B, and A are ancestors of node H
All nodes, except A, are descendants of node A

Tree Terminology

- Leaf node: a node without children
- Internal node: a node with one of more children

Tree Terminology

Discussion

- Does a leaf node have any children?
- Does the root node have a parent?
- How many parents does every node other than the root node have?

Height of a Tree

- A path is a sequence of edges leading from one node to another
- Length of a path: number of edges on the path
- Height of a (non-empty) tree : length of the longest path from the root to a leaf
- What is the height of a tree that has only a root node?

Tree Terminology

Level of a Node

- Level of a node: number of edges between root and the node
- It can be defined recursively:
- Level of root node is 0
- Level of a node that is not the root node is level of its parent + 1
- Question: What is the height of a tree in terms of levels?

Level of a Node

Subtrees

- A subtree of a node consists of a child node and all its descendants
- A subtree is itself a tree
- A node may have many subtrees

Subtrees

 node labeled E

More Tree Terminology

- Degree of a node: the number of children it has
- Degree of a tree: the maximum of the degrees of the nodes of the tree

Degree

Degrees of the nodes are indicated beside the nodes

Binary Trees

- General tree: a tree each of whose nodes may have any number of children
- n-ary tree: a tree each of whose nodes may have no more than n children
- Binary tree: a tree each of whose nodes may have no more than 2 children
- i.e. a binary tree is a tree with degree 2
- The children of a node (if present) are called the left child and right child

Binary Trees

- Recursive definition of a binary tree: it is
- the empty tree, or
- a tree which has a root whose left and right subtrees are binary trees
- A binary tree is an ordered tree, i.e. it matters whether a child is a left or right child

Binary Tree

Tree Traversals

- A traversal of a tree starts at the root and visits each node of the tree once.
- Common tree traversals:
- preorder
- inorder
- postorder
- level-order

Preorder Traversal

- Start at the root
- Visit each node, followed by its children; we will visit the left child before the right one
- Recursive algorithm for preorder traversal:
- If tree is not empty,
- Visit root node of tree
- Perform preorder traversal of its left subtree
- Perform preorder traversal of its right subtree
- What is the base case?
- What is the recursive part?

Preorder Traversal

public void preorder (BinaryTreeNode $<T>r$) \{ if $(r$! $=$ null $)$ \{
visit(r);
preorder (r.getLeftChild()); preorder (r.getRightChild()); \}
\}

Preorder Traversal

In a preorder traversal of this tree the nodes are visited in the order ABDHECFIG

Inorder Traversal

- Start at the root
- Visit the left child of each node, then the node, then any remaining nodes
- Recursive algorithm for inorder traversal
- If tree is not empty,
- Perform inorder traversal of left subtree of root
- Visit root node of tree
- Perform inorder traversal of its right subtree

Inorder Traversal

public void inorder (BinaryTreeNode $<T>r$) $\{$
if (r ! $=$ null $)$ \{
inorder (r.getLeftChild());
visit(r); inorder (r.getRightChild()); \}
\}

Inorder Traversal

In an inorder traversal of this tree the nodes are visited in the order DHBEAIFCG

Postorder Traversal

- Start at the root
- Visit the children of each node, then the node
- Recursive algorithm for postorder traversal
- If tree is not empty,
- Perform postorder traversal of left subtree of root
- Perform postorder traversal of right subtree of root
- Visit root node of tree

Postorder Traversal

public void postorder (BinaryTreeNode $<T>r$) $\{$
if (r ! = null) \{
postorder (r.getLeftChild()); postorder (r.getRightChild());
visit(r);
\}
\}

Postorder Traversal

In an postorder traversal of this tree the nodes are visited in the order HDEBIFGCA

Level Order Traversal

- Start at the root
- Visit the nodes at each level, from left to right
- Is there a recursive algorithm for a level order traversal?

Level Order Traversal

[^0]
Level Order Traversal

We need to use a queue:

- Start at the root
- Visit the nodes at each level, from left to right

Level Order Traversal

- Put A in the queue

Level Order Traversal

1. Remove the first node from the queue

Level Order Traversal

2. Enqueue all neighbours of the node that was removed from the queue

A

Level Order Traversal

Repeat steps 1 and 2 until the queue is empty

A B

Level Order Traversal

Repeat steps 1 and 2 until the queue is empty

A B
10-44

Level Order Traversal

Repeat steps 1 and 2 until the queue is empty

A B C

Level Order Traversal

Repeat steps 1 and 2 until the queue is empty

ABCD

Level Order Traversal

Repeat steps 1 and 2 until the queue is empty

ABCDE
10-47

Level Order Traversal

Repeat steps 1 and 2 until the queue is empty

ABCDEF
10-48

Level Order Traversal

Repeat steps 1 and 2 until the queue is empty

ABCDEFG
10-49

Level Order Traversal

Repeat steps 1 and 2 until the queue is empty

ABCDEFGH

Level Order Traversal

The queue is empty. The algorithm terminates

Level order Traversal

Algorithm levelOrder (root) \{
Input: root of a binary tree
Output: Nothing, but visit the nodes of the tree in level order
if root = null then return
Q = empty queue
Q.enqueue(root);
while Q is not empty do \{
v = Q.dequeue();
visit(v);
if v.leftChild() != null then Q.enqueue(v.leftChild());
if v.rightChild() != null then Q.enqueue(v.rightChild());
\}
\}

Iterative Binary Tree Traversals

- In recursive tree traversals, the Java execution stack keeps track of where we are in the tree (by means of the activation records for each call)
- In iterative traversals, the programmer needs to keep track!
- An iterative traversal uses a container to store references to nodes not yet visited
- The order in which the nodes are visited will depend on the type of container being used (stack, queue, etc.)

An Iterative Traversal Algorithm

// Assumption: the tree is not empty

Create an empty container to hold references to nodes yet to be visited.

Put reference to the root node in the container.
While the container is not empty \{
Remove a reference x from the container.
Visit the node \times points to.
Put references to non-empty children of x in the container.

Iterative Binary Tree Traversals

- Container is a stack: if we push the right child of a node before the left child, we get preorder traversal
- Container is a queue: if we enqueue the left child before the right, we get a level order traversal

Operations on a Binary Tree

- What might we want to do with a binary tree?
- Add an element
- Remove an element
- Is the tree empty?
- Get size of the tree (i.e. how many elements)
- Traverse the tree (in preorder, inorder, postorder, level order)

Possible Binary Tree Operations

Operation	Description
getRoot	Returns a reference to the root of the tree
isEmpty	Determines whether the tree is empty
size	Determines the number of elements in the tree
find	Returns a reference to the specified target, if found
toString	Returns a string representation of tree's contents
iteratorInOrder	Returns an iterator for an inorder traversal
iteratorPreOrder	Returns an iterator for a preorder traversal
iteratorPostOrder	Returns an iterator for a postorder traversal
iteratorLevelOrder	Returns an iterator for a levelorder traversal

What is an Iterator?

An iterator is an abstract data type that allows us to iterate through the elements of a collection one by one

Operations

- next: next element of the collection; ERROR if the element does not exist
- hasNext: true if there are more elements in the collection; false otherwise
- remove: removes the last element returned by the iterator

Iterator Interface

public interface Iterator<T> \{
public boolean hasNext();
public T next(); public void remove(); // (optional operation)
\}

This interface is in the java.util package of Java

Binary Tree ADT

package binaryTree;
import java.util.Iterator;

public interface BinaryTreeADT<T> \{

public T getRoot ();
public boolean isEmpty();
public int size();
public T find (T targetElement) throws
ElementNotFoundException;
public String toString();
public Iterator<T> iteratorInOrder();
public Iterator<T> iteratorPreOrder();
public Iterator<T> iteratorPostOrder();
public Iterator<T> iteratorLevelOrder();

Linked Binary Tree Implementation

- To represent the binary tree, we will use a linked structure of nodes
- root: reference to the node that is the root of the tree
- count: keeps track of the number of nodes in the tree
- First, how will we represent a node of a binary tree?

Linked Binary Tree Implementation

- A binary tree node will contain
- a reference to a data element
- references to its left and right children and to its parent

left and right children are binary tree nodes themselves

BinaryTreeNode class

- Represents a node in a binary tree
- Attributes:
- element: reference to data element
- left: reference to left child of the node
- right: reference to right child of the node
- parent: reference to the parent of the node

A BinaryTreeNode Object

protected T element; protected BinaryTreeNode $<T>$ left, right, parent;

Note that either or both of the left and right references could be null What is the meaning of protected?

LinkedBinaryTree Class

- Attributes: protected BinaryTreeNode<T> root; protected int count;
- The attributes are protected so that they can be accessed directly in any subclass of the LinkedBinaryTree class

LinkedBinaryTree Class

- Constructors:
//Creates empty binary tree public LinkedBinaryTree() \{

$$
\begin{aligned}
& \text { count = 0; } \\
& \text { root = null; }
\end{aligned}
$$

\}
//Creates binary tree with specified element as its root public LinkedBinaryTree (T element) \{
count = 1;
root = new BinaryTreeNode<T> (element);
\}
/* Returns a reference to the specified target element if it is found in this binary tree.
Throws an ElementNotFoundException if not found. */
public T find(T targetElement) throws
ElementNotFoundException
\{
BinaryTreeNode $<T>$ current $=$ findAgain(targetElement, root);
if (current == null) throw new ElementNotFoundException("binary tree");
return (current.element);
\}

Discussion

- What is element in this statement from the method?

return (current.element);

- If element were private rather than protected in BinaryTreeNode.java, what would be need in order to access it?
- We will now look at the helper method findAgain ...
private BinaryTreeNode $<T>$ findAgain(T targetElement, BinaryTreeNode<T> next) \{
if (next == null) return null;
if (next.element.equals(targetElement)) return next;
BinaryTreeNode $<$ T> temp $=$ findAgain(targetElement, next.left);
if (temp == null) temp = findAgain(targetElement, next.right);
return temp;
\}

Discussion

- What kind of method is findAgain?
- What is the base case?
- There are two!
- What is the recursive part?
/* Performs an inorder traversal on this binary tree by calling a recursive inorder method that starts with the root.
Returns an inorder iterator over this binary tree */ public Iterator<T> iteratorInOrder() \{

ArrayUnorderedList<T> tempList = new ArrayUnorderedList<T>();
inorder (root, tempList); return tempList.iterator();
\}

Discussion

- iteratorInOrder returns an iterator object - It will perform the iteration in inorder
- But where is that iterator coming from? return tempList.iterator();
- Let's now look at the helper method inorder ...
/* Performs a recursive inorder traversal. Parameters are: the node to be used as the root for this traversal, the temporary list for use in this traversal */
protected void inorder (BinaryTreeNode $<\mathrm{T}>$ node, ArrayUnorderedList<T> tempList)
\{
if (node ! = null)
\{
inorder (node.left, tempList); tempList.addToRear(node.element); inorder (node.right, tempList);

Discussion

- Recall the recursive algorithm for inorder traversal:
- If tree is not empty,
- Perform inorder traversal of left subtree of root
- Visit root node of tree
- Perform inorder traversal of its right subtree
- That is exactly the order that is being implemented here!
- What is "visiting" the root node here?

Discussion

- The data elements of the tree (i.e. items of type T) are being temporarily added to an unordered list, in inorder order
- Why use an unordered list??
- Why not? We already have this collection, with its iterator operation that we can use!

Using Binary Trees: Expression Trees

- Programs that manipulate or evaluate arithmetic expressions can use binary trees to hold the expressions
- An expression tree represents an arithmetic expression such as
$(5-3) * 4+9 / 2$
- Root node and interior nodes contain operations
- Leaf nodes contain operands

Example: An Expression Tree

Evaluating Expression Trees

- We can use an expression tree to evaluate an expression
- We start the evaluation at the bottom left
- What kind of traversal is this?

Evaluating an Expression Tree

Optional Notes: Building an Expression Tree

- Now we know how to evaluate an expression represented by an expression tree
- But, how do we build an expression tree? - We will build it from the postfix form of the expression
- Exercise: develop the algorithm by following the diagrams on the next pages

Building an Expression Tree

- The algorithm will use a stack of ExpressionTree objects
- An ExpressionTree is a special case of a binary tree
- The ExpressionTree constructor has 3 parameters:
- Reference to data item
- Reference to left child
- Reference to right child
- That's all you need to know to develop the algorithm!

Build an expression tree from the postfix expression 5 3-4* 9 +

Symbol Processing Step(s)
5 push(new ExpressionTree(5,null,null));

Expression Tree Stack (top at right)

```
5
```

Symbol
Processing Step(s)
push(new ExpressionTree(3,null,null));

Expression Tree Stack (top at right)
5
3

Symbol Processing Step(s)

$$
\begin{aligned}
& \text { op2 = pop } \\
& \text { op1 = pop } \\
& \text { push(new ExpressionTree(-,op1,op2)); }
\end{aligned}
$$

Expression Tree Stack (top at right)

Symbol Processing Step(s)

push(new ExpressionTree(4,null,null));

Expression Tree Stack (top at right)

Symbol	Processing Step(s)
${ }^{*}$	op2 = pop op1 = pop push(new ExpressionTree(${ }^{*}$,op1,op2));

Expression Tree Stack (top at right)

Symbol Processing Step(s)

9 push(new ExpressionTree(9,null,null));

Expression Tree Stack (top at right)

Symbol Processing Step(s)

$$
\begin{aligned}
& \text { op2 = pop } \\
& \text { op1 = pop } \\
& \text { push(new ExpressionTree(+,op1,op2)); }
\end{aligned}
$$

Expression Tree Stack (top at right)

End of the expression has been reached, and the full expression tree is the only tree left on the stack

[^0]: In a level order traversal of this tree the nodes will be visited in the order ABCDEFGHI

