
The Tree ADT

10-2

Objectives

• Define trees as data structures

• Discuss tree traversal algorithms

• Discuss a binary tree implementation

10-3

Trees

• A tree is a nonlinear abstract data type that
stores elements in a hierarchy.

• Examples in real life:

• Family tree

• Table of contents of a book

• Class inheritance hierarchy in Java

• Computer file system (folders and subfolders)

• Decision trees

10-4

Example: Computer File System

Root directory of C drive

Documents and Settings Program Files My Music

Desktop Favorites Start Menu Microsoft OfficeAdobe

10-5

Example: Table of Contents

Java Software Structures

Introduction Analysis of Algorithms Index

Software

Quality

Data

Structures

Algorithm

Efficiency

Time ComplexityBig Oh

Notatio

3-6

Example: Java’s Class Hierarchy

Error

Object

Exception Square

StringRectangleThrowableArray

. . .

.

.

.

.

.

.

10-7

Tree Definition

• A tree is a set of elements that either

• it is empty, or

• it has a distinguished element called the
root and zero or more trees (called
subtrees of the root)

• What kind of definition is this?

• What is the base case?

• What is the recursive part?

10-8

Tree Definition

Subtrees of

the root

Root

10-9

Tree Terminology

• Nodes: the elements in the tree

• Edges: connections between nodes

• Root: the distinguished element that is the

origin of the tree

• There is only one root node in a tree

• Empty tree has no nodes and no edges

10-10

Tree Terminology

node or

vertex

Rootedge

arc, or

link

10-11

• Parent or predecessor: the node directly above

another node in the hierarchy

• A node can have only one parent

• Child or successor: a node directly below

another node in the hierarchy

• Siblings: nodes that have the same parent

• Ancestors of a node: its parent, the parent of its

parent, etc.

• Descendants of a node: its children, the children

of its children, etc.

Tree Terminology

10-12

Tree Terminology

A

B C ED

F G

H

Node A is the parent of nodes

B, C, D, E

Node E is a child

of node A

Nodes B, C, D, E

are siblings

Nodes F, B, and A are ancestors of node H

Nodes F, G

and H are

descendants

of node B

All nodes, except A, are descendants of node A

10-13

Tree Terminology

• Leaf node: a node without children

• Internal node: a node with one of more

children

10-14

Tree Terminology

Leaf

nodes or

external

nodes

Root

Interior or

internal

nodes

10-15

Discussion

• Does a leaf node have any children?

• Does the root node have a parent?

• How many parents does every node

other than the root node have?

10-16

Height of a Tree

• A path is a sequence of edges leading
from one node to another

• Length of a path: number of edges
on the path

• Height of a (non-empty) tree : length
of the longest path from the root to a
leaf

• What is the height of a tree that has only a
root node?

10-17

Tree Terminology

Root
A

B

F H

E

J

C D

I

L M N

G

K

Height = 3

A path

Path of

length 3

10-18

Level of a Node

• Level of a node: number of edges
between root and the node

• It can be defined recursively:

• Level of root node is 0

• Level of a node that is not the root node is
level of its parent + 1

• Question: What is the height of a tree
in terms of levels?

10-19

Level of a Node

Level 0

Level 1

Level 2

Level 3

10-20

Subtrees

• A subtree of a node consists of a

child node and all its descendants

• A subtree is itself a tree

• A node may have many subtrees

10-21

Subtrees

Subtrees of the

node labeled E

E

10-22

More Tree Terminology

• Degree of a node: the number of

children it has

• Degree of a tree: the maximum of the

degrees of the nodes of the tree

10-23

Degree

A

B

F H

E

J

C D

I

L M

G

K

4

2 0 0 3

1

0

0 1 0 1

0 0

Degrees of the nodes are indicated beside the nodes

10-24

Binary Trees

• General tree: a tree each of whose
nodes may have any number of children

• n-ary tree: a tree each of whose nodes
may have no more than n children

• Binary tree: a tree each of whose nodes
may have no more than 2 children

• i.e. a binary tree is a tree with degree 2

• The children of a node (if present) are
called the left child and right child

10-25

• Recursive definition of a binary tree:

it is

• the empty tree, or

• a tree which has a root whose left and right

subtrees are binary trees

• A binary tree is an ordered tree, i.e. it

matters whether a child is a left or right

child

Binary Trees

10-26

Binary Tree

A

IH

D E

B

F

C

G

Left child of A Right child of A

10-27

Tree Traversals

• A traversal of a tree starts at the root
and visits each node of the tree once.

• Common tree traversals:

• preorder

• inorder

• postorder

• level-order

10-28

Preorder Traversal
• Start at the root

• Visit each node, followed by its children; we will
visit the left child before the right one

• Recursive algorithm for preorder traversal:

• If tree is not empty,

• Visit root node of tree

• Perform preorder traversal of its left subtree

• Perform preorder traversal of its right
subtree

• What is the base case?

• What is the recursive part?

10-29

Preorder Traversal

public void preorder (BinaryTreeNode<T> r) {

if (r != null) {

visit(r);

preorder (r.getLeftChild());

preorder (r.getRightChild());

}

}

10-30

A

IH

D E

B

F

C

G

Preorder Traversal

In a preorder traversal of this tree the nodes are visited in the order

ABDHECFIG

10-31

Inorder Traversal

• Start at the root

• Visit the left child of each node, then the node,

then any remaining nodes

• Recursive algorithm for inorder traversal

• If tree is not empty,

• Perform inorder traversal of left subtree of root

• Visit root node of tree

• Perform inorder traversal of its right subtree

10-32

Inorder Traversal

public void inorder (BinaryTreeNode<T> r) {

if (r != null) {

inorder (r.getLeftChild());

visit(r);

inorder (r.getRightChild());

}

}

10-33

A

IH

D E

B

F

C

G

In an inorder traversal of this tree the nodes are visited in the order

DHBEAIFCG

Inorder Traversal

10-34

Postorder Traversal
• Start at the root

• Visit the children of each node, then the node

• Recursive algorithm for postorder traversal

• If tree is not empty,

• Perform postorder traversal of left subtree of root

• Perform postorder traversal of right subtree of root

• Visit root node of tree

10-35

Postorder Traversal

public void postorder (BinaryTreeNode<T> r) {

if (r != null) {

postorder (r.getLeftChild());

postorder (r.getRightChild());

visit(r);

}

}

10-36

A

IH

D E

B

F

C

G

In an postorder traversal of this tree the nodes are visited in the

order HDEBIFGCA

Postorder Traversal

10-37

Level Order Traversal

• Start at the root

• Visit the nodes at each level, from left to

right

• Is there a recursive algorithm for a level

order traversal?

10-38

Level Order Traversal

A

IH

D E

B

F

C

G

In a level order traversal of this tree the nodes will be visited in the

order ABCDEFGHI

10-39

Level Order Traversal

We need to use a queue:

• Start at the root

• Visit the nodes at each level, from left to right

A

IH

D E

B

F

C

G

queue

10-40

Level Order Traversal

• Put A in the queue

A

IH

D E

B

F

C

G

A

10-41

Level Order Traversal

1. Remove the first node from the queue

A

IH

D E

B

F

C

G

A

10-42

Level Order Traversal

2. Enqueue all neighbours of the node that was

removed from the queue

A

IH

D E

B

F

C

G

A

B C

10-43

Level Order Traversal

Repeat steps 1 and 2 until the queue is empty

A

IH

D E

B

F

C

G

A B

C

10-44

Level Order Traversal

A

IH

D E

B

F

C

G

A B

C D E

Repeat steps 1 and 2 until the queue is empty

10-45

Level Order Traversal

A

IH

D E

B

F

C

G

A B C

D E F G

Repeat steps 1 and 2 until the queue is empty

10-46

Level Order Traversal

A

IH

D E

B

F

C

G

A B C D

E F G H

Repeat steps 1 and 2 until the queue is empty

10-47

Level Order Traversal

A

IH

D E

B

F

C

G

A B C D E

F G H

Repeat steps 1 and 2 until the queue is empty

10-48

Level Order Traversal

A

IH

D E

B

F

C

G

A B C D E F

G H I

Repeat steps 1 and 2 until the queue is empty

10-49

Level Order Traversal

A

IH

D E

B

F

C

G

A B C D E F G

H I

Repeat steps 1 and 2 until the queue is empty

10-50

Level Order Traversal

A

IH

D E

B

F

C

G

A B C D E F G H

I

Repeat steps 1 and 2 until the queue is empty

10-51

Level Order Traversal

A

IH

D E

B

F

C

G

Level order traversal: A B C D E F G H I

The queue is empty. The algorithm terminates

10-52

Level order Traversal

Algorithm levelOrder (root) {

Input: root of a binary tree

Output: Nothing, but visit the nodes of the tree in level order

if root = null then return

Q = empty queue

Q.enqueue(root);

while Q is not empty do {

v = Q.dequeue();

visit(v);

if v.leftChild() != null then Q.enqueue(v.leftChild());

if v.rightChild() != null then Q.enqueue(v.rightChild());

}

}

10-53

Iterative Binary Tree Traversals

• In recursive tree traversals, the Java execution

stack keeps track of where we are in the tree

(by means of the activation records for each call)

• In iterative traversals, the programmer needs

to keep track!

• An iterative traversal uses a container to store

references to nodes not yet visited

• The order in which the nodes are visited will depend

on the type of container being used (stack, queue,

etc.)

10-54

An Iterative Traversal Algorithm

// Assumption: the tree is not empty

Create an empty container to hold references to nodes

yet to be visited.

Put reference to the root node in the container.

While the container is not empty {

Remove a reference x from the container.

Visit the node x points to.

Put references to non-empty children of x in the container.

}

10-55

• Container is a stack: if we push the right child of

a node before the left child, we get preorder

traversal

• Container is a queue: if we enqueue the left

child before the right, we get a level order

traversal

Iterative Binary Tree Traversals

10-56

Operations on a Binary Tree

• What might we want to do with a binary

tree?

• Add an element

• Remove an element

• Is the tree empty?

• Get size of the tree (i.e. how many

elements)

• Traverse the tree (in preorder, inorder,

postorder, level order)

10-57

Possible Binary Tree Operations

Operation Description

getRoot Returns a reference to the root of the tree

isEmpty Determines whether the tree is empty

size Determines the number of elements in the tree

find Returns a reference to the specified target, if found

toString Returns a string representation of tree’s contents

iteratorInOrder Returns an iterator for an inorder traversal

iteratorPreOrder Returns an iterator for a preorder traversal

iteratorPostOrder Returns an iterator for a postorder traversal

iteratorLevelOrder Returns an iterator for a levelorder traversal

9-582-58

What is an Iterator?

An iterator is an abstract data type that allows us

to iterate through the elements of a collection one

by one

Operations

• next: next element of the collection; ERROR if

the element does not exist

• hasNext: true if there are more elements in the

collection; false otherwise

• remove: removes the last element returned by

the iterator

9-592-59

Iterator Interface

public interface Iterator<T> {
public boolean hasNext();

public T next();

public void remove(); // (optional operation)

}

This interface is in the java.util package of Java

Binary Tree ADT

package binaryTree;

import java.util.Iterator;

public interface BinaryTreeADT<T> {

public T getRoot ();

public boolean isEmpty();

public int size();

public T find (T targetElement) throws

ElementNotFoundException;

public String toString();

public Iterator<T> iteratorInOrder();

public Iterator<T> iteratorPreOrder();

public Iterator<T> iteratorPostOrder();

public Iterator<T> iteratorLevelOrder();

}
10-60

10-61

Linked Binary Tree Implementation

• To represent the binary tree, we will use a
linked structure of nodes

• root: reference to the node that is the root
of the tree

• count: keeps track of the number of nodes
in the tree

• First, how will we represent a node of a
binary tree?

10-62

Linked Binary Tree Implementation

• A binary tree node will contain

• a reference to a data element

• references to its left and right children and

to its parent

left and right children are binary tree nodes themselves

10-63

BinaryTreeNode class

• Represents a node in a binary tree

• Attributes:

• element: reference to data element

• left: reference to left child of the node

• right: reference to right child of the node

• parent: reference to the parent of the node

10-64

A BinaryTreeNode Object

protected T element;

protected BinaryTreeNode<T> left, right, parent;

Note that either or both of the left and right references could be null

What is the meaning of protected?

10-65

LinkedBinaryTree Class

• Attributes:

protected BinaryTreeNode<T> root;

protected int count;

• The attributes are protected so that they can

be accessed directly in any subclass of the

LinkedBinaryTree class

10-66

LinkedBinaryTree Class

• Constructors:

//Creates empty binary tree

public LinkedBinaryTree() {

count = 0;

root = null;

}

//Creates binary tree with specified element as its root

public LinkedBinaryTree (T element) {

count = 1;

root = new BinaryTreeNode<T> (element);

}

10-67

/* Returns a reference to the specified target element if it is
found in this binary tree.
Throws an ElementNotFoundException if not found. */

public T find(T targetElement) throws
ElementNotFoundException

{

BinaryTreeNode<T> current =
findAgain(targetElement, root);

if (current == null)

throw new ElementNotFoundException("binary tree");

return (current.element);

}

10-68

Discussion

• What is element in this statement from
the method?

return (current.element);

• If element were private rather than
protected in BinaryTreeNode.java, what
would be need in order to access it?

• We will now look at the helper method
findAgain …

10-69

private BinaryTreeNode<T> findAgain(T targetElement,

BinaryTreeNode<T> next) {

if (next == null)

return null;

if (next.element.equals(targetElement))

return next;

BinaryTreeNode<T> temp =

findAgain(targetElement, next.left);

if (temp == null)

temp = findAgain(targetElement, next.right);

return temp;

}

10-70

Discussion

• What kind of method is findAgain?

• What is the base case?

• There are two!

• What is the recursive part?

10-71

/* Performs an inorder traversal on this binary tree by
calling a recursive inorder method that starts with
the root.
Returns an inorder iterator over this binary tree */

public Iterator<T> iteratorInOrder() {

ArrayUnorderedList<T> tempList =
new ArrayUnorderedList<T>();

inorder (root, tempList);

return tempList.iterator();

}

10-72

Discussion

• iteratorInOrder returns an iterator object

• It will perform the iteration in inorder

• But where is that iterator coming from?

return tempList.iterator();

• Let’s now look at the helper method

inorder …

10-73

/* Performs a recursive inorder traversal.
Parameters are: the node to be used as the root
for this traversal, the temporary list for use in this
traversal */

protected void inorder (BinaryTreeNode<T> node,

ArrayUnorderedList<T> tempList)

{

if (node != null)

{

inorder (node.left, tempList);

tempList.addToRear(node.element);

inorder (node.right, tempList);

}

}

10-74

Discussion

• Recall the recursive algorithm for inorder
traversal:

• If tree is not empty,

• Perform inorder traversal of left subtree of
root

• Visit root node of tree

• Perform inorder traversal of its right subtree

• That is exactly the order that is being
implemented here!

• What is “visiting” the root node here?

10-75

Discussion

• The data elements of the tree (i.e. items

of type T) are being temporarily added

to an unordered list, in inorder order

• Why use an unordered list??

• Why not? We already have this

collection, with its iterator operation

that we can use!

10-76

Using Binary Trees: Expression Trees

• Programs that manipulate or evaluate
arithmetic expressions can use binary
trees to hold the expressions

• An expression tree represents an
arithmetic expression such as
(5 – 3) * 4 + 9 / 2

• Root node and interior nodes contain
operations

• Leaf nodes contain operands

10-77

Example: An Expression Tree

/

-

35

+

(5 – 3) * 4 + 9 / 2

4

*

9 2

10-78

Evaluating Expression Trees

• We can use an expression tree to evaluate

an expression

• We start the evaluation at the bottom left

• What kind of traversal is this?

10-79

Evaluating an Expression Tree

-

57 8/

29

* This tree represents

the expression

(9 / 2 + 7) * (8 – 5)

Evaluation is based on a postorder traversal:

If root node is a leaf, return the associated value.

Recursively evaluate expression in left subtree.

Recursively evaluate expression in right subtree.

Perform operation in root node on these two

values, and return result.

+

10-80

Evaluating an Expression Tree

-

57 8/

29

*

+

10-81

Evaluating an Expression Tree

-

57 8/

29

*

+

9/2 = 4.5

10-82

Evaluating an Expression Tree

-

57 8/

29

*

+

4.5

4.5 + 7 = 11.5

10-83

Evaluating an Expression Tree

-

57 8/

29

*

+

4.5

11.5 8 – 5 = 3

10-84

Evaluating an Expression Tree

-

57 8/

29

*

+

4.5

11.5 3

11.5 * 3 = 34.5

10-85

Optional Notes: Building an

Expression Tree

• Now we know how to evaluate an

expression represented by an expression

tree

• But, how do we build an expression tree?

• We will build it from the postfix form of

the expression

• Exercise: develop the algorithm by

following the diagrams on the next pages

10-86

Building an Expression Tree

• The algorithm will use a stack of
ExpressionTree objects

• An ExpressionTree is a special case of a
binary tree

• The ExpressionTree constructor has 3
parameters:

• Reference to data item

• Reference to left child

• Reference to right child

• That's all you need to know to develop the
algorithm!

10-87

Build an expression tree from the postfix

expression 5 3 - 4 * 9 +

Symbol

5
push(new ExpressionTree(5,null,null));

Processing Step(s)

Expression Tree Stack (top at right)

5

Symbol

3
push(new ExpressionTree(3,null,null));

Processing Step(s)

Expression Tree Stack (top at right)

5 3

10-88

Symbol

-
op2 = pop

op1 = pop

push(new ExpressionTree(-,op1,op2));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

10-89

Symbol

4
push(new ExpressionTree(4,null,null));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

10-90

Symbol

*
op2 = pop

op1 = pop

push(new ExpressionTree(*,op1,op2));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

*

10-91

Symbol

9
push(new ExpressionTree(9,null,null));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

* 9

10-92

Symbol

+
op2 = pop

op1 = pop

push(new ExpressionTree(+,op1,op2));

Processing Step(s)

Expression Tree Stack (top at right)

5

-

3

4

* 9

+
End of the expression

has been reached, and

the full expression tree

is the only tree left on

the stack

