
What is Computation?

1.6. Branching structures 25

a
n=5,δ=25.7◦

F
F→F[+F]F[-F]F

b
n=5,δ=20◦

F
F→F[+F]F[-F][F]

c
n=4,δ=22.5◦

F
F→FF-[-F+F+F]+

[+F-F-F]

d
n=7,δ=20◦

X
X→F[+X]F[-X]+X
F→FF

e
n=7,δ=25.7◦

X
X→F[+X][-X]FX
F→FF

f
n=5,δ=22.5◦

X
X→F-[[X]+X]+F[+FX]-X
F→FF

Figure 1.24: Examples of plant-like structures generated by bracketed OL-
systems. L-systems (a), (b) and (c) are edge-rewriting, while (d), (e) and
(f) are node-rewriting.

The mean transmembrane potentials are driven by incom-

ing post-synaptic potentials (PSPs), which in turn depend
on the firing rates from connecting neurons within and

without the neural mass. The dynamics of hk, where k = e,i
refers to excitatory and inhibitory neurons, respectively,
follow from

sk
o
ot
hk x~; tð Þ ¼ hrk $ hk x~; tð Þ þ Rl¼e;iWlk hk x~; tð Þ½ ' (Ilk x~; tð Þ;

ð1Þ

Here parameters sk and hrk describe the characteristic decay
times and resting potentials, respectively. The x~ vector

corresponds here to the three-dimensional spatial position

of a vertex on the cortical sheet, i.e., we could instead label
the state variables spatially by their vertex numbers. The Ilk
state variables describe the somatic impact of incoming

postsynaptic potentials (with, e.g., Iei referring to excitatory
PSPs on an inhibitory population). The Wlk take into

account that the conductance of voltage-gated ion channels

depends on the current membrane potential; for instance, if
neurons are in a depolarized state, then the PSPs caused by

additional excitatory pre-synaptic impulses are reduced.

Wlk takes the following form

Wlk hk x~; tð Þ½ ' ¼ heqlk $ hk x~; tð Þ
heqlk $ hrk
!! !! ; ð2Þ

where heqlk is the Nernst equilibrium potential, i.e., the
potential at which the impact of PSPs changes sign. Since

heqek [hre but heqlk\hri ; these Nernst factors are normalized

so that the PSP impact at soma Ilk, which is a positive
function itself, is weighted with ?1 and -1 for excitatory

and inhibitory inputs, respectively, if the target neuron is at

rest.
The dynamics of Ilk, and its dependence on incoming

firing rates Flk, follows from

Here a local pre-synaptic spike input Flk x~; tð Þ ¼ d tð Þ;
where d(t) is the Dirac delta, leads to a PSP impact at the
soma with a biologically plausible bi-exponential form

Ilk x~; tð Þ ¼ eclkdlkClk~clk (e$clk t$e$~clk t

~clk$clk
(H tð Þ; where H(t) is the

Heaviside step function. The parameters dlk and elk control
the rise and decay time of this impulse response: the

maximum amplitude is Ilk x~; t ¼ dlkð Þ ¼ Clk; and the

shortest decay time Ilk x~; t ¼ 3:1462 (dlkð Þ ¼ Clk=e occurs

for elk ? 0, a limit in which the PSP impulse response

acquires the simpler ‘‘alpha form’’ Ilk x~; tð Þ ¼ eClk
dlk

(te$t=dlk (
H tð Þ: For our simulations here we use the simple elk = 0

case, hence clk ¼ ~clk ¼ 1=dlk with rise times dek ¼ 3:33 ms

and dik ¼ 15:35 ms (Bojak et al. 2004).
The actual incoming firing rate Flk is composed of three

parts: pek and Uek are, respectively, the excitatory firing

rates from subcortical and cortico-cortical inputs. Note that
Uik does not occur because inhibitory long-range fibers are

basically absent in cortex (Braitenberg and Schüz 1998);
for rare exceptions see however (Clancy et al. 2009). We

assume here as well that there are no extra-cortical inhib-

itory inputs pik to cortex. Nb
lkSl hl x~; tð Þ½ ' is the incoming

firing rate from within the local neural mass itself. It

depends on the number of local connections Nlk
b and the

average mean transmembrane potential hl, which deter-
mines the local firing rate. Sl is a sigmoidal squashing

function

Sl hl x~; tð Þ½ ' ¼ Smax
l (1þ exp $

ffiffiffi
2

p hl x~; tð Þ $ ll
rl

$% &$1

:

ð4Þ

It is an approximation to an error function and corresponds

to the assumption of a Gaussian distribution of firing
thresholds in the neural mass with mean ll and variance rl

2.

Fee and Fek also drive the hemodynamics underlying fMRI

BOLD prediction, since they are related to glutamate
release.

The initial conditions for this system of equations are

taken from a fixed point solution, for which all derivatives
of the six system variables are assumed to be zero:

ohk=ot ¼ oIlk=ot ¼ 0; leaving them constant in time

hk x~; tð Þ ¼ h)k x~ð Þ and Ikl x~; tð Þ ¼ I)kl x~ð Þ:We will indicate fixed
point solutions by a star in the following. Note that the

program allows system parameters like clk to vary from

vertex to vertex, thus more accurately it is clk x~ð Þ: Hence
h)k x~ð Þ and Ikl x~ð Þ can depend on spatial (vertex) position. If
one makes some suitable assumptions about plk and Ulk;
then Eqs. 1–4 reduce to just two equations in h)e xð Þ and

h)i x~ð Þ for the fixed point. For our initial state calculation,
we set p)lk x~; tð Þ ¼ !plk !xð Þ; i.e., the cortical vertices are

assumed to get constant subcortical input, which however

can vary spatially. Further, U)
ek x~; tð Þ ¼ Na

ekSe h)e x~ð Þ
' (

; where

o
ot

þ clk

$
o
ot

þ ~clk

$
Ilk x~; tð Þ ¼ eclkdlkClk~clk (Flk x~; tð Þ; clk *

elk
eelk $ 1

1

dlk
;

Flk x~; tð Þ ¼ Nb
lkSl hl x~; tð Þ½ ' þ

pek x~; tð Þ þ Uek x~; tð Þ for lk ¼ ee; ei

0 for lk ¼ ie; ii

(

; ~clk * eelkclk:
ð3Þ

142 Brain Topogr (2010) 23:139–149

123

or	

“What do I want for lunch?”

Languages are all about computation!

The Chomsky Hierarchy,	

equally familiar to linguists and 	

theoretical computer scientists

Definition 0.1 A frameshift machine is a five-tuple M ¼ ðR;C; s;E; dÞ where

R is the finite input alphabet;
C is the finite output alphabet;

s 2 N is the frame size;
E $ Rs is the set of end frames,

d $ R% & Rs & R% & C& Zðs' 1Þ;
d finite, is the transition relation.

For a frameshift machineM ¼ ðR;C; s;E; dÞ and a transition (u, w, v, a, i) [d, we call u
the left context, v the right context, w the input, a the output, and i the shift amount.

For a frameshift machine M ¼ ðR;C; s;E; dÞ; we define the derivation relation ‘M on
R% & C% & N by

ðw; a; nÞ ‘M ðw; aa; nþ mþ sÞ

if and only if (u, w(n, s), v, a, m) [d and u) sw
 ðn' 1Þ; v) pw

!ðnþ sÞ where w; u; v 2
R%; a 2 C%; n; nþ mþ s 2 NðjwjÞ; a 2 C;m 2 Z: Then, let ‘%M be the reflexive, transitive
closure of ‘M :

Further, for w 2 R% and L $ R%; let MðwÞ ¼ fa j ðw; k; 1Þ ‘%M ðw; a; kÞ; k 2 NðjwjÞ;
wðk; sÞ 2 Eg and MðLÞ ¼

S
w2L MðwÞ: Also, for a 2 C% and L $ C%; let M'1ðaÞ ¼ fw j

a 2 MðwÞg and M'1ðLÞ ¼
S

a2L M
'1ðaÞ:

Although the type of machine described above is general enough to work over arbitrary
finite alphabets and frame sizes, we are primarily concerned here with the biological case. As
such, we fix the following notational conventions for the remainder of the paper. We use the
alphabets RRNA ¼ fU, C, A, Gg;CAA ¼ fa; r; n; d; c; e; q; g; h; i; l; k;m; f; p; s; t;w; y; vg for
the set of ribonucleotides and amino acids, respectively. We use the underlines to disam-
biguate between individual amino acids and variables, however we will omit the underlines
in situations where it is clear from the context.We also define the partial functionwhichmaps
codons onto amino acids, /GEN : R3

RNA 7!CAA; as done in the genetic code (see Table 1).
Also, we define the set of stop codons, ESP = {UAA, UAG, UGA}. We would like to note
that the formalmodel could be usedwith alternate genetic codes [which are known to occur in
some organisms (Lozupone et al. 2001)] or stop codons coding for amino acids (Lozupone
et al. 2001), including the incorporation of the 21st amino acid, selenocysteine (Baranov
et al. 2002).

Then, usual translation (without frameshifting) is just a special case of the following
machine,MGEN ¼ ðRRNA;CAA; 3;ESP; dGENÞwhere dGEN ¼ fðk;w; k; a; 0Þ j /GENðwÞ ¼ ag:

The derivation relation describes how the inputs can be converted to outputs in a single
step. If we have ðw; a; nÞ ‘M ðw; aa; nþ mþ sÞ; then w is the input (the RNA), a is the
output (the protein segment) we have generated so far, we are currently scanning the nth
character of w, and there is a transition (u, w(n, s), v, a, m) which implies that the next s
letters of w is w(n, s), the machine outputs the letter a, and moves forward the codon size s
plus the frameshift amount m. As an example,

ðAUGGCCCGA; k; 1Þ ‘MGEN
ðAUGGCCCGA;m; 4Þ ‘MGEN

ðAUGGCCCGA;ma; 7Þ:

Lastly, everything before the current position of the input must end in u, and
everything after the codon of the input must begin with v which in the case of MGEN is
always true since the left and right contexts are always empty. The contexts are nec-
essary however as often times a stimulatory signal in the RNA distinct from the shift site
is necessary in order to shift frames (Baranov et al. 2002). We will discuss the contexts

242 M. Daley, I. McQuillan

123

So what?

where w0 = w(k0, 5), v
0 = v(l0, 5) since M

GEN only moves forward one input letter at each

step.
Let w0 ¼ a1a2a3a4a5; v0 ¼ a01a

0
2a
0
3a
0
4a
0
5; ai; a

0
i 2 RRNA:

Assume that b 6¼ s: Thus, there is only one possibility for a3; that is a3 ¼ a03: Assume
also that a 6¼ s; then a2 ¼ a02: So, assume a ¼ s: Thus, a1 a2, a

0
1a
0
2 is equal to UC or AG.

However, no two elements in /"1
GENðdÞ; for any d 2 CAA; can start with G and C. Thus,

there is only one value for a2; a2 ¼ a02 Then, assume c 6¼ s: Then, a4 ¼ a04: Assume c ¼ s:
Thus, a3a4 is either equal to UC or AG. But, there is only one possibility for a3 and so there
is also only one possibility for a4. Hence, if b 6¼ s; a2a3a4 ¼ a02a

0
3a
0
4:

Assume that b ¼ s: Then there is only one possibility for a2 since there is no two words
in /-1(d), for some d 2 CAA; that has U and A in the middle. Thus, there is also only one
possibility for a3, since a2 = U implies a3 = C and a2 = A implies a3 = G. Also, there is
only one possibility for a4, since no two words of /-1(d), for some d 2 CAA that start with
either G or C can have two different middle letters. Hence, a2a3a4 ¼ a02a

0
3a
0
4: (

Combining these two lemmas together, since M GEN is 1-pseudo-injective and upstream,
we obtain:

Proposition 0.1 Let x ¼ ax0b; x 2 Cþ
AA with a; b 2 C: Then

ðw; k; 1Þ ‘&M
GEN

ðw; ax0b; kÞ;

ðv; k; 1Þ ‘&M
GEN

ðv; ax0b; lÞ;

implies w(2) _ w(k ? 1) = v(2) _ v(l ? 1).

We are unsure if this result is known in another form, but a formal mathematical proof
that it is necessarily true follows quite easily using the frameshift machine. This is
interesting mathematically and also potentially interesting in the study of various genetic
codes. If (unrealistically), translation were forced to proceed by shifting forward one
ribonucleotide, as opposed to three, then given a string of amino acids, there would only be
a single possible transcript that could code for that particular protein (except for the first
and last nucleotide). This is in sharp contrast to normal translation, where a single codon
can code for as many as six amino acids. This could be an important property of the
standard genetic code. Note however, that it is not possible to obtain all possible sequences
of amino acids using this approach. From the perspective of bioinformatics, it may be of
use for studying frameshifting. For example, it may prove beneficial, given one or more
proteins to ‘‘fill in’’ the ‘‘missing’’ amino acids and then uniquely determine the coding
mRNA. We will explore the relevance of this idea next.

Although examining such a sequence of amino acids as above would be unusual, it
would be useful to have two protein sequences which were obtained from the same RNA,
but in two consecutive reading frames (likely after a ?1 or -1 frameshift). Here, we will
start with two such protein sequences (that are in two consecutive reading frames) and then
try to determine the original RNA. This will be relevant for any {0, 1} or {0, -1}
frameshifting where there is at most one occurrence of frameshifting in the gene. There are
many such biological examples of this scenario including the dnaX gene in E. coli, V.
Cholerae, Y. pestis and N. meningitidis (Baranov et al. 2002).

As a first step towards this problem, we start with a slightly easier problem. The next
two propositions takes as ‘‘input’’ two protein segments produced in two consecutive
reading frames, and tries to determine which reading frame each protein segment

246 M. Daley, I. McQuillan

123

If we model processes (like translation) as
computations...

... then we can prove theorems about them.

it reads a letter which renders the prefix out of Lduo, it will eliminate either w or v as a
possible regular expression, leaving only the other.

Algorithm 1 Determine prefix and dual RNA regular expressions

input: a ¼ ða1; b1Þ $ $ $ ðan; bnÞ; aj; bj 2 CAA [fk; $g;Mduo ¼ ðQ; ĈAA;F; q0; dÞ:
output: i, the longest prefix such that (a1, b1)_ (ai, bi) [Lduo,regular expressions w; v for all possible w, v of

minimal length corresponding to (a1, b1) _ (ai, bi) in equations (1), (2), (3), (4) of Proposition 0.3.

i 1
inDuo (true //this will be true if the prefix of length i is in Lduo
q 1 //start state of Mduo

while i B n and inDuo = true
q dðq; ðai; biÞÞ
if q is defined //true if (a1, b1) _ (ai, bi) [Lduo

if ðai; biÞ ðr,eÞ and (i = 1 or i% 1 2 fðs; lÞ; ðl; sÞ; ðh; tÞ; ðc; vÞ; ðy; iÞ; ða; rÞ;
ðr; aÞ; ðf ; lÞ; ðp; pÞ; ðg; gÞgÞ then wð3ði% 1Þ þ 1Þ fA, Cg:

//as discussed above.
else let wð3ði% 1Þ þ 1Þ be the unique first character of words in q(ai, bi).
if ðai; biÞ ¼ ðe; rÞ and (i = 1 or i% 1 2 fðs; lÞ; ðl; sÞ; ðt; hÞ; ðv; cÞ; ði; yÞ; ða; rÞ;

ðr; aÞ; ðl; f Þ; ðp; pÞ; ðg; gÞgÞ then vð3ði% 1Þ þ 1Þ fA, Cg:
else let vð3ði% 1Þ þ 1Þ be the unique first character of words in q(bi,ai).
let wð3ði% 1Þ þ 2Þ and wð3ði% 1Þ þ 3Þ be unique 2nd, 3rd chars of words in q(ai, bi).
let vð3ði% 1Þ þ 2Þ and vð3ði% 1Þ þ 3Þ be unique 2nd, 3rd chars of words in q(bi, ai).
i??

else inDuo (false.
let wð3ði% 1Þ þ 4Þ be the set of all last ribonucleotides of strings in q(ai, bi).
let vð3ði% 1Þ þ 4Þ be the set of all last ribonucleotides of strings in q(bi, ai).
output i% 1;w; v

The algorithm will terminate when we reach a letter that is not in CAA ' CAA: In
Algorithm 3 below, we will introduce the handling of stop codons and situations where one
protein segment is longer than the other.

Algorithm 2 Determine RNAs and order

input: a ¼ ða1; b1Þ $ $ $ ðan; bnÞ; aj; bj 2 CAA[fk; $g;Mduo ¼ ðQ; ĈAA;F; q0; dÞ be DFA above.
output: j such that a1; . . .; aj; b1; . . .; bj 2 CAA;
isW, isV, w and v; let w; and v; be the outputs from Algorithm 1. isW / true //true as long as w is still a

possible regular expression
isV / true //true as long as v is still a possible regular expression
if i = n or ðaiþ1; biþ1Þ 62 CAA ' CAA; then output i, isW, isV, w; v

and only one of w; v is correct. //otherwise ða1; b1Þ $ $ $ ðaj; bjÞ 62 Lduo
j / i ? 1
//determines if w or v is only possible reg. exp., and thus the reading frame of each protein.
let X be the set of characters in the last position of w;
let Y be the set of characters in the last position of v;
let X0 be the set of first characters of words in q(aj, bj)
let Y0 be the set of first characters of words in q(bj, aj)
if X \ X0 ¼ ;; isW / false.
if Y \ Y 0 ¼ ;; isV / false. //one must be false otherwise i = n or i not maximal
while j B n and aj; bj 2 CAA

if isW is true
let X be the set of characters in the last position of w;
let X0 be the set of first characters of words in q(aj, bj)
let wð3ðj% 1Þ þ 1Þ be the set of characters X \ X0

Modelling programmed frameshifting with frameshift machines 251

123

... and develop new algorithms.

What is Computer
Science?

Every process is a computation.

Computer Scientists study computation,	

not necessarily computers.

“Computer Science is no more about computers than
astronomy is about telescopes”

(attribution disputed)

I love that quote, because it’s true for me.

But for all of CS? It’s complete bullshit.

Some of us study computation, but some 	

of us really do study telescopes.	

I mean “computers”.

What is a Computer?

Even if we restrict ourselves to human-made, “artificial”
computers, there’s more than you might think...

