CS3340 Analysis of Algorithms

Instructor Dr. Kaizhong Zhang

Office MC 372

Tel. Ext. 83826

Email kzhang<at>csd.uwo.ca

Home Page owl.uwo.ca/portal and www.csd.uwo.ca/courses/CS3340b/
• **Textbook:**

 Introduction to Algorithms (third edition, 2009)
 by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein

• **Assignments:**

 3 assignments, 10 % each
 all three will involve some programming
 use Java, C or C++
 should be independent work

• **Examinations:**

 Midterm Exam, 25%
 Final Exam, 45%
 close-book exams
Goals of the course

• Survey important data structures and algorithms to help us design efficient programs (software)

• Introduce mathematical techniques for the analysis of algorithms
Synopsis

- **Algorithms**: precisely stated general problem-solving methods suitable for computer implementation

- **Data structures**: methods of organizing data involved in computation

- They are central objects of study in computer science

- They go hand-in-hand: neither can be studied fruitfully without knowledge of the other
World of algorithms

- Sequential algorithms
- Parallel algorithms:
 many computers or processes working concurrently
 - synchronously: all computers working together to solve a problem such as sorting
 - asynchronously: computers working independently usually on a network (distributed database systems)
- Randomizing algorithms:
 flip a coin, use outcome wisely
- Approximation algorithms:
 find good approximation in polynomial time
• Computational geometry:
 very useful for robotics
• Computational biology algorithms:
 solving molecular biology problems with computational methods
• Genetic algorithms:
 use mutation, splicing and other genetic principles for optimization
• DNA computing algorithms:
 used for computation by solely manipulating DNA strands
• etc.
Topics

- Induction, order of magnitude, solving recurrence relations.
- Sorting. Various sorting methods: quicksort, mergesort, heapsort, etc. Lower bounds on sorting. Selection.
- String matching and sequence comparison. Huffman coding.
- Union-find.
- Graph algorithms:
 depth-first search, cycles, topological sort, shortest paths, transitive closure, spanning trees, connected components, maximum flow.
(... continued)

- Algorithms design techniques:
 divide-and-conquer, dynamic programming, analysis of recurrences
- NP-completeness
- Parallel algorithms