Objectives

• Understand how running time or space used is a function of the problem size.

• Learn that this can be analyzed.

• See how to use this analysis to choose better algorithms.
class DataSet {
 private double[] data = new double[20];
 private int nused = 0;

 public void addValue(double val) {
 if (nused == data.length) {
 double[] newData = new double[2*data.length];
 for (int i = 0; i < data.length; i++)
 newData[i] = data[i];
 data = newData;
 }
 data[nused++] = val;
 }

 // All the rest is the same
}
Suppose We Grow One at a Time

• Time to add the first is 1.
• Time to add the second is 2 (copy 1, add 1).
• …
• Time to add the k-th is k (copy k-1, add 1).

• Time to add all of the first k is

\[T(k) = 1 + 2 + \ldots + k = \frac{k^2 + k}{2} \]
Time to Add the First k, with Doubling

- Time to add the first is 1.
- Time to add the second is 1.
- ...
- Time to add the 20th is 1.

Must double size, however, for 21. This involves copying 20.

Time to add the 21st is $21 = 20 + 1$.

- Time to add the 22nd is 1.
- ...
- Time to add the 40th is 1
- Time to add the 41st is 41.
- Time to add the 42nd is 1
- ...
Time to Add the First k Elements (contd)

• Time to add the first k is

\[T(k) = 1 + 1 + 1 + ... + 1 \quad (k \text{ of them}) + \]
\[+ 20 + 40 + 80 + 160 + ... + 20 \times 2^n, \quad \text{for max } n \text{ such that } 20 \times 2^n < k \]
\[= k + 20 \times [1 + 2 + 4 + ... + 2^n] = k + 20 \times [2^{(n+1)} - 1] \]

Note \(n \) is the integer such that \(20 \times 2^n < k \leq 20 \times 2^{(n+1)} \)
so \(\log_2(k/20) - 1 \leq n < \log_2(k/20) \).

Therefore, using the green inequality in the red expression,

\[k + 20 \times 2^{(\log_2(k/20) - 1+1) - 1} \leq T(k) < k + 20 \times 2^{(\log_2(k/20) +1) - 1} \]
\[k + 20 \times [k/20 - 1] \leq T(k) < k + 20 \times [k/20 \times 2 - 1] \]
\[2k - 20 \leq T(k) < 3k - 20 \]

• That is rather a lot of algebra, but it shows the time to add the first k elements is proportional to k.
Doesn’t This Waste Space?

• Potentially *about half* the space is wasted?

 E.g. After enlarging from 20 to 21, have 19 unused slots.

• That is indeed the *worst case* behaviour.

• What is the behaviour *on average*?
Average Space Use

- Expect about 75% used. Why?

- Suppose we have just doubled the size going from k to 2k to add element k+1.

 Then averaging over all cases k+1 to 2k we have
 once k+1 out of 2k are full
 once k+2 out of 2k are full
 ...
 once 2k out of 2k are full.

 => an average of \(\frac{1.5k}{2k} = \frac{3}{4} \) full for these cases.

Same for the previous bunch (from k/2 to k), and the bunch before that (from k/4 to k/2),

=> On average \(\frac{3}{4} \) of slots are full and \(\frac{1}{4} \) are “wasted”.
Conclusion

• By doubling instead of adding one at a time, we waste on average $k/4$ space.

• By doubling instead of adding one at a time, we take time proportional to k instead of k^2.

• We can figure out how our programs behave by mathematical analysis.