The Binary Search Tree ADT
Binary Search Tree

- A **binary search tree (BST)** is a binary tree with an **ordering** property of its elements, such that the data in any internal node is
 - **Greater than** the data in any node in its left subtree
 - **Less than** the data in any node in its right subtree
- **Note**: this definition does not allow duplicates; some definitions do, in which case we could say “**less than or equal to**”
Binary Search Tree

A *binary search tree (BST)* is a binary tree with the following *ordering* property on all its internal nodes:

- $d >$ data in any node in left subtree
- $d <$ data in any node in right subtree
Examples: are these Binary Search Trees?
Discussion

• Observations:
 • What is in the leftmost node?
 • What is in the rightmost node?
Properties of Binary Search Trees

- Smallest value: 5
- Largest value: 32
BST Operations

• A binary search tree is a special case of a binary tree
 • So, it has all the operations of a binary tree
• It also has operations specific to a BST:
 • add an element (requires that the BST property be maintained)
 • remove an element (requires that the BST property be maintained)
 • remove the maximum element
 • remove the minimum element
Searching in a BST

- Why is it called a binary \textit{search} tree?
 - Data is stored in such a way, that it can be more \textit{efficiently} found than in an ordinary binary tree
Searching in a BST

- Algorithm to search for an item in a BST
 - Compare data item to the root of the (sub)tree
 - If data item = data at root, found
 - If data item < data at root, go to the left; if there is no left child, data item is not in tree
 - If data item > data at root, go to the right; if there is no right child, data item is not in tree
private BinaryTreeNode<T> find (T element, BinaryTreeNode<T> r) {
 if (r == null) return null;
 else {
 Comparable<T> comparableElement = (Comparable<T>)element;
 if (comparableElement.compareTo(r.element) == 0)
 return r;
 else if (comparableElement.compareTo(r.element) > 0)
 return find(element,r.right);
 else return find(element,r.left);
 }
}
Search Operation

Search for 19: visited nodes are coloured yellow; 19 > 14 so look into right child of 14, which is 26. 19 < 26 so look into left child of 26. This child is 19 and we stop because we found the target 19.
Search Operation

Search for 13: visited nodes are coloured yellow; return false when node containing 12 has no right child
Search Operation

Search for 22: return false when node containing 23 has no left child
BST Operations: \textbf{add}

- To \textit{add} an item to a BST:
 - Follow the algorithm for searching, until there is no child
 - Insert at that point

- So, new node will be added as a leaf
- (We are assuming no duplicates allowed)
Add Operation

To insert 13:

Same nodes are visited as when searching for 13.

Instead of returning \textit{false} when the node containing 12 has no right child, build the new node, attach it as the right child of the node containing 12, and return \textit{true}.
Algorithm `insert(k, r)`

Input: value \(k \), node \(r \) of a binary search tree

Output: `true` if \(k \) was successfully added and `false` if not

```plaintext
if tree is empty then {
  set new node storing \( k \) as the root of the tree
  return true
}
if \( k \) is equal to the value at \( r \) then return false // no duplicates allowed
else if \( k < \) value at \( r \) then
  if \( r \) has no left child then {
    set new node storing \( k \) as left child of \( r \)
    return true
  }
else return insert (\( k \), left child of \( r \))
else // \( k > \) value at \( r \)
  if \( r \) has no right child then {
    set new node storing \( k \) as right child of \( r \)
    return true
  }
else return insert (\( k \), right child of \( r \))
```
Example: Adding Elements to a BST

1: Add 26

2: Add 15

3: Add 38

4: Add 31

5: Add 7

5: Add 34
Binary Search Tree Traversals

• Consider the traversals of a binary search tree: preorder, inorder, postorder, level-order

• Try the traversals on the example on the next page
 • Is there anything special about the order of the data in the BST, for each traversal?

• Question: what if we wanted to visit the nodes in descending order?
Binary Search Tree Traversals

Try these traversals:

- preorder
- inorder
- postorder
- level-order
Binary Search Tree ADT

- A binary search tree is just a binary tree with the ordering property imposed on all nodes in the tree.

- So, we can define the `BinarySearchTreeADT` interface as an extension of the `BinaryTreeADT` interface.
public interface BinarySearchTreeADT<T> extends BinaryTreeADT<T> {
 public void addElement (T element);

 public T removeElement (T targetElement);

 public void removeAllOccurrences (T targetElement);

 public T removeMin();

 public T removeMax();

 public T findMin();

 public T findMax();
}
Implementing BSTs using Links

• The special thing about a Binary Search Tree is that finding a specific element is efficient!

• So, `LinkedBinarySearchTree` has a `find` method that overrides the `find` method of the parent class `LinkedBinaryTree`
 • It only has to search the appropriate side of the tree
 • It uses a recursive helper method `findAgain`

• Note that it does not have a `contains` method that overrides the `contains` of `LinkedBinaryTree` – why not?
 • It doesn’t need to, because `contains` just calls `find`
Using Binary Search Trees: Implementing Ordered Lists

- A BST can be used to provide efficient implementations of other collections!
- We will examine an implementation of an **Ordered List ADT** as a **binary search tree**
- Our implementation is called **BinarySearchTreeList.java** (naming convention same as before: this is a BST implementation of a List)
Using BST to Implement Ordered List

• BinarySearchTreeList *implements* **OrderedListADT**
 • Which extends **ListADT**
 • So it also implements **ListADT**
 • So, what operations do we need to *implement*?
 • add
 • removeFirst, removeLast, remove, first, last, contains, isEmpty, size, iterator, toString
 • But, for which operations do we actually need to write code? …
Using BST to Implement Ordered List

- **BinarySearchTreeList** extends our binary search tree class **LinkedBinarySearchTree**
 - Which extends **LinkedBinaryTree**
 - So, what operations have we *inherited*?
 - `addElement`, `removeElement`, `removeMin`, `removeMax`, `findMin`, `findMax`, `find`
 - `getRoot`, `isEmpty`, `size`, `contains`, `find`, `toString`, `iteratorInOrder`, `iteratorPreOrder`, `iteratorPostOrder`, `iteratorLevelOrder`
Discussion

• First, let us consider some of the methods of the List ADT that we do not need to write code for:
 • `contains` method: we can just use the one from the `LinkedBinaryTree` class
 • What about the methods
 • `isEmpty`
 • `size`
 • `toString`
Discussion

• To implement the following methods of the OrderedListADT, we can call the appropriate methods of the LinkedBinarySearchTree class (fill in the missing ones)
 • add call addElement
 • removeFirst
 • removeLast
 • remove
 • first
 • last
 • iterator