
Part I. Multiple Choice Questions

1. D

2. A

3. B

4. C

5. B

6. B

7. B

8. C

9. A

10. C

11. C

12. B

13. C

14. C

15. A

16. B

1



Part II. Written Answers

Write your answers only in the space provided.

17. (3 marks) Consider the following algorithm.

public int traverse(BinaryTreeNode r) {
if (r == null) return 0;

else {
int v = traverse(r.getLeftChild()) - traverse(r.getRightChild());

if (v > r.getElement()) return v;

else return r.getElement();

}
If the following statement is executed

int result = traverse(r);

where r is the root of the tree on the right.

What value will result have? 2

1

1

−4

35

18. (5 marks) Consider the following Java code.

public static void main (String[] args) {
int[] a = new int[3];

int size = 0;

init(a,size);

for (int i = 1; i < size; ++i) System.out.println(a[i]);

System.out.println(a[0]);

}
private static void init(int[] a, int size) {

for (int i = 0; i < 3; ++i) {
++size;

a[i] = (1-i) * size;

}
}

Show the output produced by this algorithm. Values must be printed in the same order as the algorithm
prints them.

1

19. Consider the following Java code.

public static void main(String[] args) {
int[] a = {3, 5, 2};
int result = m(a,0,2);

}
public static int m(int[] a, int first, int last) {

if (first > last) return 1;

else {
int mid = (int)Math.floor((first+last)/2);

return m(a,first,mid-1)+m(a,mid+1,last);// Line 1

}
}

where method Math.floor(x) rounds the value of the parameter x down to the nearest integer. For
example, Math.floor(3.2) = 3, Math.floor(3) = 3.

(3 marks) What value does result have at the end? 4

(2 marks) How many recursive calls does the algorithm make (number of calls made in Line 1)? 6

2



20. (6 marks) Consider the implementation of a stack using a circular linked list. A circular linked list is
a singly linked list where the last node of the list points to the first node of the list instead of to null.
Each node of the list stores one element of the stack. There is a reference variable called top pointing
to the node storing the value at the top of the stack and a reference variable called bottom pointing
to the node storing the value at the bottom of the stack. For example, a stack storing values 9, 5, and
7, with 7 at the top and 9 at the bottom of the stack is represented with the circular liked list below.

957 5

top bottom

97
bottom

of
stack

top 
of

stack

Consider the following implementation of the pop() operation. Assume that elements stored in the
stack are of type T; top and bottom are instance variables. Methods getElement, getNext, and
setNext get the data stored in a node, get a reference to the next node in the list, and change the
reference to the next node in the list, respectively.

private T pop() {
T element = top.getElement();

top = top.getNext();

bottom.setNext(top);

return element;

}

Indicate whether this is a correct implementation of the pop operation. If the implementation is
incorrect, explain why it is incorrect by giving an example showing that the code will not perform the
pop operation correctly. If the implementation is correct, explain why it always correctly removes and
returns the element at the top of the stack.

The implementation is incorrect. There are 2 situations where it will not give the desired results.
First, when the stack has only one element, that element will not be removed when a pop operation
is performed. In this case the stack before and after the pop operation will look like this:

7

top bottom

Second, if the stack is empty, the above code will not execute correctly as then top = bottom =

null and the above code will throw a null pointer exception.

21. (3 marks) Draw a binary tree in which every node stores one of the letters A, B, C, D, E and such that

• a preorder traversal visits the nodes in this order: E A D B C, and

• an inorder traversal visits the nodes in this order: A E B D C.

E

A D

B C

3



For each one of the following 4 questions, compute the time complexity of the given code. You must

explain how you computed the time complexity and you must give the order (big-Oh) of the
time complexity. (Hint. Your answer might be like this: “Number of operations performed outside
the loops: x; number of operations performed in one iteration of the inner loop: y; number of iterations
of the inner loop when i = 0 is z1, when i = 1 is z2, . . .; total number of operations performed by the
loops: w. Total number of operations performed by the algorithm: x + w. The order of the time

complexity is O(v).”) The following fact might be useful to you:

m∑

k=1

=
m(m+ 1)

2
.

22. (7 marks)

int x = 0;

for (int i = 0; i < n; i = i+1)

for (int j = 0; j < n; j = j+1) {
if (j < i) j = j + n;

else x = x+1;

}

In each iteration of the inner loop a constant number c1 of operations are performed. When i = 0
the inner loop performs n iterations: one for each j = 0, 1, . . . , n − 1. However, for each value
i = 1, 2, . . . , n − 1 the inner loop performs only one iteration; this is because for these values of i
when j = 0 the condition of the if statement is true so the value of j is set to n ending the inner
loop.

Hence, the total number of iterations of the inner loop is 2n−1 and the total number of operations
performed by the loops is (2n − 1)c1. Outside the loop a constant number c2 of operations are
performed, so the total number of operations performed by the algorithm is c2 + c1(2n− 1); thus
the time complexity is O(n).

23. (7 marks)

int x = 1;

for (int i = 0; i <= n * n; i = i + n)

for (int j = 0; j < i; j = j + n)

x = x + 1;

Each iteration of the inner loop performs a constant number c1 of operations. The number of
iterations of the inner loop depends on the value of i as shown in the table below.

number of iterations number of operations in
of inner loop i-th iteration of outer loop

i = 0 0 0
i = n 1 (j = 0) c1
i = 2n 2 (j = 0, n) 2c1
...

...
...

i = n2 n (j = 0, n, 2n, . . . , n(n− 1)) nc1

Outside the loops a constant number c2 of operations are performed. Adding the number of
operations in the last column of the table we get that the total number of operations performed

by the algorithm is c2 + c1 +2c1 +3c1 + . . .+nc1 = c2 + c1
∑

n

i=1 i = c2 + c1
n(n+1)

2 . Therefore, the
time complexity is O(n2).

4



24. (7 marks)

int j = 1;

int i = 1;

while (i <= n) {
if (i == n)

if (j < n) {
i = 1;

j = j+1;

}
else i = n+1;

else i = i+1;

}

Each iteration of the while loop performs a constant number c of operations. The following table
shows the number of iterations and operations performed by the loop.

number of iterations number of operations
j = 1 n (i = 1, 2, . . . , n) cn

j = 2 n (i = 1, 2, . . . , n) cn

j = 3 n (i = 1, 2, . . . , n) cn
...

...
...

j = n− 1 n (i = 1, 2, . . . , n) cn

j = n n (i = 1, 2, . . . , n) cn

Outside the while loop there is a constant number c1 of operations. Hence, adding the number of
operations in the last column of the table we get that the total number of operations performed
by the algorithm is c1 + (cn)n = c1 + cn2. Therefore, the time complexity is O(n2).

25. (7 marks) In the following algorithm node r is the root of a binary tree with n > 0 nodes.

public int traverse(BinaryTreeNode r) {
int res = 2;

if (r.getLeftChild() != null) res = res + traverse(r.getLeftChild());

if (r.getRightChild() != null) res = res + traverse(r.getRightChild());

return res;

}

First, ignoring the recursive calls, the algorithm performs a constant number c of operations. The
algorithm performs one recursive call for each non-null child of every internal node of the tree;
hence the recursive calls make the algorithm visit or process once each one of the nodes of the
tree. Therefore, the number of recursive calls is n. Since each call performs c operations and the
number of calls is n, the total number of operations performed by the algorithm is cn, so the time
complexity is O(n).

5



For the following 4 questions write algorithms in Java or in detailed Java-like pseudocode like the ones
used in the lecture notes.

26. (12 marks) A binary tree is symmetric if for every internal node the number of nodes in its left subtree
is the same as the number of nodes in its right subtree. Given a node p, let p.size() return the
number of nodes in the subtree with root p, and p.getLeftChild() and p.getRightChild() return
the left and right children of p, respectively. Write a recursive algorithm isSymmetric(r) that receives
as parameter the root r of a binary tree and it returns true if the tree is symmetric and it returns
false otherwise. For example for the tree below with root r the algorithm must return true, but for
the tree with root s it must return false.

r s

Algorithm isSymmetric(r)

Input: Root r of a binary tree.
Output: True if the tree is symmetric; false otherwise

if r = null then return true
else if r.getLeftChild() = null and r.getRightChild() = null then

return true
else if r.getLeftchild() = null or r.getRightchild() = null then

return false
else if r.getLeftChild().size() 6= r.getRightChild().size() then

return false
else if isSymmetric(r.getLeftChild() = false then

return false
else return isSymmetric(r.getRightChild()

27. (8 marks) Let q be a queue storing n data items. Write an algorithm reverse (q) to reverse the queue
so that the first element in q (the element at the front of the queue) becomes last (the element at the
rear of the queue), the second element becomes the second last and so on. The only methods that
you can use to manipulate the queue are q.enqueue(element) that adds an element to the rear of the
queue, q.dequeue() that removes the element at the front of the queue, and q.isEmpty() that returns
true if the queue is empty and it returns false if the queue is not empty. You cannot use any auxiliary
data structures. (Hint. Design a recursive algorithm similar to the one in one of the questions of the
midterm.)

Algorithm reverse(q)

Input; queue q

Output: Reverse queue

if q.isEmpty() then return q

else {
elem = q.dequeue()

q1 = reverse(q)

q1.enqueue(elem)

return q1

}

6



28. (11 marks) Let q be a queue storing n integer values. Write an algorithm partition(q,target)

that receives as parameter q and an integer value target and it re-arranges the values in the queue
so that all the values smaller than target appear closer to the front of the queue than any values
larger than or equal to target. For this algorithm you can use one auxiliary stack s. You cannot

use any other auxiliary data structures. You can use the following queue methods: q.dequeue(),
q.enqueue(element), q.isEmpty and q.size() (that returns the number of elements in the queue).
You can also use the following stack methods: s.push(element), s.pop(), and s.isEmpty().

For example, for the following queue on the left side and target = 6, your algorithm should produce
a queue like the one on the right.

48657 76845

front front rearrear >= 6< 6

Algorithm partition(q,target)

Input: queue q storing n integer values and value target

Output: queue re-arranged so al values smaller than target appear closer to the front than values
larger than target

s = new empty stack
n = q.size()

for i = 1 to n do {
elem = q.dequeue()

if elem < target then q.enqueue(elem)

else s.push(elem)

}
while s.isEmpty() = false do

q.enqueue(s.pop())

7



29. (11 marks) Write an algorithm remove(target) to remove the node storing a given value target from
a sorted singly linked list. If no node in the list stores value target then the algorithm must return
null otherwise it must return target. Instance variable first is a reference variable pointing to the
first node in the list. If current is a reference to a node, current.next() returns a reference to the
next node in the list (or null if current points to the last node in the list), current.setNext(succ)
makes the node referenced by current point to node succ, and current.getElement() returns the
data item stored in the node pointed by current.

Algorithm remove(target)

Input: target value
Output: target if a node storing target was removed; null otherwise

prev = null

curr = first

while (curr 6= null) and (curr.getElement() 6= target) do
prev = curr

curr = curr.next()

}
if curr = null then return null

else {
if prev = null then first = curr.next()

else prev.setNext(curr.next())

return target

}

8


