
Introduction to

Analysis of Algorithms

1-21-2

Analysis of Algorithms

• To determine how efficient an algorithm is

we compute the amount of time that the

algorithm needs to solve a problem.

• Given two algorithms for the same problem,

the preferred one is the faster.

1-31-3

Time Complexity

• The time complexity of an algorithm is a

function that gives the amount of time that

the algorithm takes to complete.

• The time complexity depends on the size of

the input, or the number of data items in the

input.

1-41-4

Time Complexity

• The time complexity of an algorithm is

denoted as t(n) or f(n), where n is the size

of the input.

• The time complexity is non-decreasing in

the size of the input, i.e. the amount of time

needed by an algorithm cannot decrease

as the size of the input increases. (For

example, copying a large array cannot take

less time than making a copy of a smaller

array.)

1-51-5

Asymptotic Growth

• Let

t(n) = 15n2 + 45 n

be the time complexity of an algorithm. For

each value of n the function indicates the

amount of time required by the algorithm.

So t(1) is the running time of the algorithm

when the input has 1 data item, t(100) is

the running time of the algorithm when the

input has 100 data items, and so on.

1-6

No. of items n 15n2 45n 15n2 + 45n

1 15 45 60

2 60 90 150

5 375 225 600

10 1,500 450 1,950

100 150,000 4,500 154,500

1,000 15,000,000 45,000 15,045,000

10,000 1,500,000,000 450,000 1,500,450,000

100,000 150,000,000,000 4,500,000 150,004,500,000

1,000,000 15,000,000,000,000 45,000,000 15,000,045,000,000

The following table shows the value of the above

function t(n) for various values of n. Assume that the

times are given in microseconds (1 microsecond =

0.000001 second)

1-7

Asymptotic Growth

When trying to decide whether an algorithm is

efficient we are only interested in the value of its

time complexity for large values of n, because for

small values of n the running time of an algorithm is

very small. (For example, in the previous table, for

values of n smaller than 100 the running times are

much smaller than 1 second. However, for n = 1

million, the running time of the algorithm is 173

days.)

1-8

Asymptotic Growth

For large values of n, the value of the time

complexity function is mainly determined by the

largest term in the function. For example, for the

above time complexity t(n) = 15n2 + 45n the largest

term is 15n2. Notice that for large values of n, the

value of 15n2 is much bigger than the value of 45n.

We say that 15n2 asymptotically dominates 45n

and so that t(n) has the same asymptotic behaviour

as 15n2.

1-91-9

Big-Oh Notation

There is a mathematical notation called
the order or big-Oh notation for
expressing the asymptotic growth of a
time complexity function.

A formal definition for the big-Oh notation
will be given in the second year course on
data structures an algorithms. The big-Oh
notation captures the running time of an
algorithm independently of how it is
implemented and executed, i.e.,
independently of the programming

1-101-10

Big-OhNotation

language in which it is implemented, of
the computer in which it is run and of the
operating system used by such a
computer.

Roughly speaking, since different
computers differ in speed by a constant
factor (a factor that does not depend on
the algorithm being executed and the size
of the input on which the algorithm
operates), when expressing the
asymptotic growth of a time complexity

1-111-11

Big-Oh Notation

function using the big-Oh notation, any
constant factors in the function are ignored.

So, for example the time complexity
function t(n) = 15n2 + 45n, grows
asymptotically as fast as 15n2, which in big-
Oh notation is denoted as O(n2) since, as
explained above, the constant factor 15 is
ignored. A factor is constant if its value
does not depend on the size of the input.
(Note that 15 does not depend on n.)

1-121-12

• The asymptotic growth of the time

complexity function of an algorithm is

referred to as the order of the time

complexity of the algorithm.

• Example: O(n2) means that the time taken

by the algorithm grows quadratically as n

increases

• O(1) means constant time, independent of

the size of the input

Big-Oh Notation

1-131-13

Given a time complexity function of the form

t(n) = t1(n) + t2(n) + … + tk(n)

Where the number k of terms is constant (i.e.

independent of n) the order of t(n) is determined

by the largest term ti(n).

Some examples of computing the order of

several functions are given in the next page.

Big-Oh Notation

1-14

Determining Time Complexity

When computing the time complexity of

an algorithm, we focus our attention on

the most expensive parts of the algorithm,

namely the loops and the recursive calls.

We will look at recursive calls later, for

now we will look at how to compute the

time complexity of loops.

1-15

Determining Time Complexity

The time complexity function of an algorithm

gives the running time of the algorithm. From

just the description of an algorithm we cannot

determine the amount of time, say in seconds,

that it would need to execute. So, how can we

determine the time complexity of an algorithm

like this one?

x = 0;

for (int i = 0; i < n; i++)

x = x + 1;

1-16

Determining Time Complexity

When analyzing an algorithm we cannot

determine its actual running time, but we can

estimate it if we count the number of basic or

primitive operations that the algorithm performs.

A basic or primitive operation is an operation

that takes constant time (i.e. independent of the

size of the input). Some examples of primitive

operations are: assigning a value to a variable,

comparing the values of two variables and

adding two values.

1-171-17

Analysing Loop Execution

For the algorithm below, the primitive operations are =,

<, ++, +. Outside the loop one operation is performed

(=). In each iteration of the loop four operations are

performed (<, ++, =, +). Since the loop is repeated n

times, the total number of operations performed is

4n+1. Roughly speaking, this means that the running

time of the algorithm is proportional to 4n+1. The order

of the function 4n+1 is O(n) and so is the order of the

time complexity of the algorithm.

x = 0;

for (int i=0; i<n; i++)

x = x + 1;

1-181-18

Time Complexity

Since the number of primitive operations performed by

an algorithm and the time complexity of the algorithm

have the same order, we can say that the time

complexity of an algorithm is the same as the number of

primitive operations that it performs.

So, for the algorithm above we say that its time

complexity is t(n) = 4n+1. Note that we are not really

interested in the exact value of this function, but we only

wish to know the order of the time complexity. So we say

that the above algorithm as time complexity O(n).

Notice that since any constant factors in the time

complexity function are ignored when computing the

order of the time complexity, we do not need to count

exactly the number of primitive operations performed by

the algorithm. For example, for the same algorithm above

We can say that each iteration of the for loop performs a

constant number k of operations. Since the loop is

repeated n times, the total number of operations

performed by the for loop is kn. Outside the loop a

constant number k’ of additional operations are

performed, so the total number of operations performed

by the algorithm is kn + k’, which is O(n).

Note that we obtained the same result, namely that the

time complexity is O(n) even though we did not count the

exact number of operations.

x = 0;

for (int i=0; i<n; i++)

x = x + 1;
1-19

1-201-20

However, we need to be very careful when counting

the number of iterations of any loop, as a wrong value

for the number of operations might lead to the wrong

order for the time complexity.

Nested loops

When computing the time complexity of an algorithm

with nested loops, like the algorithm below, we usually

consider the innermost loop first and work our way

outward.

for (int i=0; i<n; i++) {

x = x + 1;

for (int j=0; j<n; j++)

y = y – 1;

}

1-21

Each iteration of the inner loop performs a constant number k

of operations. Every time that the loop is performed, it

iterates n times (as j takes values 0, 1, …, n-1), therefore the

total number of operations performed by the inner loop is kn.

Outside the inner loop, but inside the outer one, an additional

constant number k’ of operations are performed (x = x+1), so

each iteration of the outside loop performs k’ + kn operations.

The outer loop is repeated n times, so the total number of

operations performed by this algorithm is t(n) = n(k’ + kn) =

k’n + kn2. Note that in this function the term kn2 asymptotically

dominates the term k’n, so ignoring constant factor we get

that t(n) is O(n2).

1-221-22

More Loop Analysis Examples

x = 0;

for (int i=0; i<n; i=i+2) {

x = x + 1;

}

For the above algorithm, each iteration of the loop
performs a constant number k of operations. The loop is
repeated n/2 times, as in each iteration the value of i
increases by 2. Furthermore, outside the loop an
additional constant number k’ of operations are
performed.

Hence, the total number of operations performed by the
algorithm is k’ + kn/2. The time complexity of this
algorithm, then is O(n).

1-231-23

More Loop Analysis Examples

x = 0;

for (int i=1; i<=n; i=i*2) {

x = x + 1;

}

For the above algorithm, outside the loop a constant
number k’ of operations are performed. Also each
iteration of the loop performs a constant number k of
operations. Counting the total number of iterations of
the loop is more complicated. Let us look at the value of
i in each iteration:

1-24

Iteration number Value of i

1 1 = 20

2 2 = 21

3 4 = 22

4 8 = 23

… …

1 + log n n = 2log n

Hence, the number of iterations performed by the loop is

1 + log n. The total number of operations performed by

the loop is t(n) = k’ + k(1 + log n) = k’ + k + k log n. The

dominating term is k log n, so the time complexity is

O(log n).

1-251-25

x = 0;

for (int i=0; i<n; i++)

for (int j = i, j < n, j ++) {

x = x + 1;

}

The inner loop performs a constant number k of

operations in each iteration. The inner loop repeats

once for each value of j between i and n-1, thus the

number of iterations is n-i. The number of operations

performed by the inner loop is then k(n-i). Note that this

expression depends on the value of the variable i.

More Loop Analysis Examples

1-26

The outer loop is repeated once for each value of i between

0 and n-1, and as we saw in each iteration the number of

operations performed by the inner loop is k(n-i). Hence the

total number of operations performed by this loop is

k(n-0) + k(n-1) + k(n-2) + … + k(n-(n-1)) =

kn + k(n-1) + k(n-2) + … + k(1) = k σ𝑖=1
𝑛 𝑖 = kn(n+1)/2 =

kn2/2 + kn/2.

Outside the outer loop a constant number k’ of additional

operations are performed, so the total number of operations

performed by the algorithm is k’ + kn/2 + kn2/2. the

dominating term is kn2/2, so the time complexity of the

algorithm is O(n2).

