
Topic 2

Collections

2-2 2-2

Objectives

• Define the concepts and terminology

related to collections

• Discuss the abstract design of

collections

2-3 2-3

Collections

Collection: a group of items that we wish

to treat as a conceptual unit

• Example: a stamp collection

• In computer science, we have

collections of items also

• Examples: stack, queue, list, tree, graph

• The proper choice of a collection for a

given problem can affect the efficiency

of a solution!

2-4 2-4

Examples of Collections

• What do collections look like?

• Queue: first item in is first item out

• e.g. a lineup at a checkout counter

• Stack: last item in is first item out

• e.g. a stack of plates in the cafeteria

• List: we can have ordered lists or

unordered lists

• e.g. a shopping list; a list of names and

phone numbers; a to-do list

2-5

Example: stack of plates

New plate is added at the top of the stack,

and will be the first one removed

2-6

Example: queue at checkout

First person served will

be the one at the front of

queue

New person is

added to the rear

of the queue

2-7

Example: ordered list of numbers

16 23 29 40 51 67 88

58

New number must be added

so that the ordering of the list

is maintained

2-8 2-8

Examples of Collections

• The previous examples are linear

collections: items are organized in a

“straight line”

• Each item except the first has a

unique predecessor, and each item

except the last has a unique

successor within the collection

2-9 2-9

Examples of Collections

• We also have nonlinear collections

• Hierarchical collections: trees

• items are ordered in an “upside down

tree”

• Each item except the one at the top has

a unique predecessor but may have

many successors

• Examples: taxonomies, computer file

systems

2-10

Example of a tree:

 computer file system

Root directory of C drive

Documents and Settings Program Files My Music

Desktop Favorites Start Menu Microsoft Office Adobe

2-11 2-11

• Another nonlinear collection is a

graph: items can have many

predecessors and many

successors
• Example: maps of airline routes between

cities

Examples of Collections

2-12 2-12

London

Example of a graph: airline routes

between cities

2-13 2-13

Abstraction

• In solving problems in computer
science, an important design principle is
the notion of abstraction

• Abstraction separates the purpose of
an entity from its implementation

• Example in real life: a car (we do not have
to know how an engine works in order to
drive a car)

• Examples in computer systems: a
computer, a file

• Example in Java: class, object

2-14 2-14

• Abstraction provides a way of dealing
with the complexity of a large system

• We will deal with each collection in a
general way, as a data abstraction

• We will think of what we want to do with
the collection, independently of how it is
done

• For example, we may want to add
something to a queue, or to remove it from
the queue

Abstraction

2-15 2-15

Collection as an Abstraction

• Example: think of a queue of customers

• Suppose what we want to do is to deal

with the first customer in the queue, i.e.

dequeue a customer

• How is this dequeue done?

• We may not need to know, if someone else

looked after the details

• Or, if we are involved in the “how”

• We may choose to program in Java or some

other language

• There may be several ways of implementing

a queue that differ in efficiency

2-16 2-16

Collection as an Abstraction

• In other words, we want to separate

• The interface of the collection:
what we need in order to interact with
it, i.e. the operations on the collection

• This is from the perspective of a user of
the collection

• The implementation of the
collection: the underlying details of
how it is coded

• This is from the perspective of a writer of
the collection code

2-17 2-17

Issues with Collections

• For each collection that we examine, we
will consider:

• How does the collection operate
conceptually?

• How do we formally define its interface?

• What kinds of problems does it help us
solve?

• In what ways might we implement it?

• What are the benefits and costs of each
implementation?

2-18 2-18

Abstract Data Types (ADTs)

• Data type: a set of values and the
operations defined on those values

• Example: integer data type (int)

• Values? operations?

• Abstract data type : a collection of
data together with the set of operations
on that data

• Why abstract? It’s a data type whose
values and operations are not inherently
defined in a programming language

• Examples: stack, queue, list, tree

2-19 2-19

Data Structures

• Data structure: a construct within a
programming language, used to
implement a collection

• Example: array

• So, what is the difference between the
terms “abstract data type” and “data
structure”?

• (Note that sometimes the terms are used
interchangeably, in generalizations about
“data structures”)

