Topic 2

Collections

Objectives

* Define the concepts and terminology
related to collections

* Discuss the abstract design of
collections

2-2

Collections

Collection: a group of items that we wish
to treat as a conceptual unit

- Example: a stamp collection
* In computer science, we have
collections of items also
« Examples: stack, queue, list, tree, graph
* The proper choice of a collection for a

given problem can affect the efficiency
of a solution!

2-3

Examples of Collections

* What do collections look like?
* Queue: first item In Is first item out
 e.g. a lineup at a checkout counter
» Stack: last item in is first item out
* e.g. a stack of plates in the cafeteria

* List: we can have ordered lists or
unordered lists

* e.g. a shopping list; a list of names and
phone numbers; a to-do list

2-4

Example: stack of plates

- New plate is added at the top of the stack,
and will be the first one removed

2-5

Example: gueue at checkout

First person served will
be the one at the front of
gqueue

New person is
added to the rear
N| N| N| of the queue

2-6

Example: ordered list of numbers

New number must be added
so that the ordering of the list
IS maintained

16 23 29 40 51 67 38

58

Examples of Collections

* The previous examples are linear
collections: items are organized in a

“straig
e Eac

Nt line”
N Iitem except the first has a

unIc

ue predecessor, and each item

except the last has a unique
successor within the collection

2-8

Examples of Collections

e We also have nonlinear collections

* Hierarchical collections: trees

* items are ordered in an “upside down
tree”

« Each item except the one at the top has
a unigue predecessor but may have
many SUCCessors

» Examples: taxonomies, computer file
systems

2-9

Example of a tree:
computer file system

Root directory of C drive

_

Documents and Settings

/

AN

N T

Program Files My Music

/

N\

Desktop

Favorites

Start Menu

Adobe

Microsoft Office

2-10

Examples of Collections

* Another nonlinear collection is a
graph: items can have many
predecessors and many
SUCCESSOrS

« Example: maps of airline routes between
cities

2-11

Example of a graph: airline routes
between cities

London

2-12

Abstraction

* |In solving problems in computer
science, an important design principle Is
the notion of abstraction

» Abstraction separates the purpose of
an entity from its implementation

« Example in real life: a car (we do not have
to know how an engine works in order to
drive a car)

« Examples in computer systems: a
computer, a file

« Example in Java: class, object

2-13

Abstraction

» Abstraction provides a way of dealing
with the complexity of a large system

* We will deal with each collection in a
general way, as a data abstraction

« We will think of what we want to do with
the collection, independently of how 1t Is
done

* For example, we may want to add

something to a queue, or to remove it from
the queue

2-14

Collection as an Abstraction

« Example: think of a queue of customers

« Suppose what we want to do is to deal
with the first customer in the queue, I.e.
dequeue a customer

* How Is this dequeue done?

 We may not need to know, if someone else
looked after the detalls

* Or, if we are involved in the “how”

 We may choose to program in Java or some
other language

* There may be several ways of implementing

a queue that differ in efficiency 215

Collection as an Abstraction

* In other words, we want to separate

* The interface of the collection:
what we need in order to interact with
it, I.e. the operations on the collection

 This is from the perspective of a user of
the collection

 The implementation of the
collection: the underlying detalls of
how It Is coded

 This is from the perspective of a writer of
the collection code

2-16

Issues with Collections

 For each collection that we examine, we
will consider:

« How does the collection operate
conceptually?

How do we formally define its interface?

What kinds of problems does it help us
solve?

In what ways might we implement it?

What are the benefits and costs of each
Implementation?

2-17

Abstract Data Types (ADTs)

- Datatype: a set of values and the
operations defined on those values
« Example: integer data type (int)
 Values? operations?

« Abstract data type : a collection of
data together with the set of operations
on that data

« Why abstract? It's a data type whose
values and operations are not inherently
defined in a programming language

- Examples: stack, queue, list, tree

2-18

Data Structures

» Data structure: a construct within a
programming language, used to
Implement a collection
« Example: array

S0, what Is the difference between the
terms "abstract data type” and “data
structure”?

* (Note that sometimes the terms are used
iInterchangeably, in generalizations about
“data structures”)

2-19

