
Topic 3

The Stack ADT

3-2

Objectives

• Define a stack collection

• Use a stack to solve a problem

• Examine an array implementation of a

stack

3-3

Stacks

• Stack : a collection whose elements

are added and removed from one end,

called the top of the stack

• Stack is a LIFO (last in, first out) data

structure

• Examples:

• A stack of plates – what can we do with the

elements of this collection?

• Other real-world examples of stacks?

3-4

Conceptual View of a Stack

bottom

of stack

(old) top

of stack

New object is added as the

new top element of the stack

Adding an element

new

top

bottom

3-5

Conceptual View of a Stack

Object is removed from the top

of the stack

Removing an element

top

bottom

new

top

bottom

3-6

Uses of Stacks in Computing

Useful for any kind of problem involving

LIFO data

• Backtracking: in puzzles and games

• Browsers

• To keep track of pages visited in a browser

tab

3-7

Uses of Stacks in Computing

• Word Processors, editors
• To check expressions or strings of text for matching

parentheses / brackets
e.g. if (a == b)
 { c = (d + e) * f;
 }

• To implement undo operations

• Keeps track of the most recent operations

• Markup languages (e.g. HTML, XML): have
formatting information (tags) as well as raw text
• To check for matching tags

e.g. <HEAD>
 <TITLE>Computer Science 1027a</TITLE>
 </HEAD>

3-8

Uses of Stacks in Computing

• Stack Calculators

• To convert an infix expression to postfix,
to make evaluation easier (more on this later)

 Infix expression: a * b + c

 Postfix expression: a b * c +

• To evaluate postfix expressions (ditto)

• Compilers

• To convert infix expressions to postfix, to
make translation of a high-level language
such as Java or C to a lower level
language easier

3-9

Uses of Stacks in Computing

• Call stack (Runtime stack)

• Used by runtime system when methods

are invoked, for method call / return

processing (more on this later)

• e.g. main calls method1

 method1 calls method 2

 method 2 returns …

• Holds “call frame” containing local

variables, parameters, etc.

• Why is a stack structure used for this?

3-10

Operations on a Collection

• Every collection has a set of operations that

define how we interact with it, for example:

• Add elements

• Remove elements

• Determine if the collection is empty

• Determine the collection's size

3-11

Stack Operations

• push: add an element at the top of the
stack

• pop: remove the element at the top of
the stack

• peek: examine the element at the top of
the stack

• It is not legal to access any element
other than the one that is at the top of
the stack!

3-12

Operations on a Stack

Operation Description

push Adds an element to the top of the stack

pop Removes an element from the top of the stack

peek Examines the element at the top of the stack

isEmpty Determines whether the stack is empty

size Determines the number of elements in the stack

toString Returns a string representation of the stack

3-13

Discussion

• Do the operations defined for the stack

have anything to do with Java?

• Do they say what the stack is used for?

• Do they say how the stack is stored in a

computer?

• Do they say how the operations are

implemented?

3-14

Stack ADT

• Stack Abstract Data Type (Stack ADT)

• It is a collection of data

• Together with the operations on that
data

• We just discussed the operations

3-15

Java Interfaces

• Java has a programming construct

called an interface that we use to formally

define what the operations on a collection

are in Java

• Java interface: a list of abstract methods

and constants

• Must be public

• Constants must be declared as final static

3-16

Java Interfaces

• Abstract method : a method that does

not have an implementation, i.e. it just

consists of the header of the method:

return type method name (parameter list)

3-17

Java Interface for Stack ADT
public interface StackADT<T>

{

 // Adds one element to the top of this stack

 public void push (T element);

 // Removes and returns the top element from this stack

 public T pop();

 // Returns without removing the top element of this stack

 public T peek();

 // Returns true if this stack contains no elements

 public boolean isEmpty();

 // Returns the number of elements in this stack

 public int size();

 // Returns a string representation of this stack

 public String toString();

}

3-18

Generic Types

 What is this <T> in the interface definition?

• It represents a generic type

• For generality, we can define a class (or
interface) based on a generic type rather than an
actual type

• Example: we define a Stack for objects of type T

• The actual type is known only when an application
program creates an object of that class

• Examples:

• in a card game: a Stack of Card objects

• in checking HTML tags: a Stack of Tag
objects

3-19

Generic Types

• Note: it is merely a convention to use T
to represent the generic type

• In the class definition, we enclose the
generic type in angle brackets: < T >

3-20

Implementing an Interface

• One or more classes can implement an
interface, perhaps differently

• A class implements the interface by
providing the implementations (bodies) for
each of the abstract methods

• Uses the reserved word implements
followed by the interface name

• We will see Stack ADT implementation
examples soon … but first we will look at
using a stack

3-21

Using a Stack: Postfix Expressions

• Normally, we write expressions using
infix notation:

• Operators are between operands: 3 + 4 * 2

• Parentheses force precedence: (3 + 4) * 2

• In a postfix expression, the operator
comes after its two operands

• Examples above would be written as:

3 4 2 * +

3 4 + 2 *

• What is the advantage of writing
expressions in postfix form?

3-22

Evaluating Postfix Expressions

• Algorithm to evaluate a postfix expression:

• Scan from left to right, determining if the next
token or symbol is an operator or operand

• If it is an operand, push it on the stack

• If it is an operator, pop the stack twice to get
the two operands, perform the operation, and
push the result back onto the stack

• Try the algorithm on our examples …

• At the end, there will be one value on the
stack – what is it?

3-23

Using a Stack to Evaluate a

Postfix Expression

Evaluation of

7 4 -3 * 1 5 + / *

7

4

-3

top

7

-12

7

-12

1

5

7

-12

6

7

-2

-14

top

top

top

top

top

4 * -3 1 + 5 -12 / 6 7 * -2

At end of evaluation, the result is

the only item on the stack

3-24

Java Code to Evaluate Postfix

Expressions

• For simplicity, assume the operands in the
expressions are integer

• See Postfix.java
• Reads postfix expressions and evaluates them

• See PostfixEvaluator.java
• The postfix expression evaluator

• Note that it uses a class called ArrayStack, which is an
implementation of the Stack ADT that we will now
examine

• We will see later that it could just as well have used
a different implementation of the Stack ADT!

3-25

Implementing a Stack

• Does an application program need to
know how the Stack collection is
implemented?

• No - we are using the Stack collection for
its functionality (what); how it is
implemented is not relevant

• The Stack collection could be
implemented in various ways; let’s first
examine how we can use an array

3-26

An Array of Object References

0 1 2 3 4 5 6

3-27

Stack Implementation Issues

• What do we need to implement a stack?

• A data structure (container) to hold

the data elements

• Something to indicate the top of the

stack

3-28

Array Implementation of a Stack

• Our container will be an array to hold the

data elements

• Data elements are kept contiguously at one end

of the array

• The top of the stack will be indicated by its

position in the array (index)

• Let’s assume that the bottom of the stack is at

index 0

• The top of the stack will be represented by an

integer variable that is the index of the next

available slot in the array

3-29

Array Implementation of a Stack

top

4

stack

0 1 2 3 4 5 6 7

…

top

5

stack

0 1 2 3 4 5 6 7

…

A Stack s with 4 elements

After pushing an element

s

s

3-30

top

4

stack

0 1 2 3 4 5 6 7

…

top

3

stack

0 1 2 3 4 5 6 7

…

After popping one element

After popping a second element

s

s

3-31

Java Implementation

• The array variable stack holds references

to objects

• Their type is determined when the stack is

instantiated

• The integer variable top stores the index

of the next available slot in the array

• What else does top represent?

3-32

The ArrayStack Class

• The class ArrayStack implements the

StackADT interface:

public class ArrayStack<T> implements StackADT<T>

In the Java Collections API, class names

indicate both the underlying data structure

and the collection

• We will adopt the same naming convention: the

ArrayStack class represents an array

implementation of a stack collection

3-33

ArrayStack Data Fields

• Attributes (instance variables):

 private T[] stack; // the container for the data

 private int top; // indicates the next open slot

• Note that these were not specified in the

Java interface for the StackADT (why not?)

• There is also a private constant (see later)
private final int DEFAULT_CAPACITY=100;

3-34

//---

// Creates an empty stack using the default capacity.

//---

public ArrayStack()

{

 top = 0;

 stack = (T[]) (new Object[DEFAULT_CAPACITY]);

}

//---

// Creates an empty stack using the specified capacity.

//---

public ArrayStack (int initialCapacity)

{

 top = 0;

 stack = (T[]) (new Object[initialCapacity]);

}

ArrayStack

constructors

3-35

ArrayStack Constructors

• Note: constructors are not specified in the Java

interface for the StackADT (why not?)

• What is the purpose of (T[]) ?

• The elements of the stack array are of generic type T

• Recall: we can’t instantiate anything of a generic

type

• So, we need to instantiate an element of type

Object and cast it into the type T

• Specifically, we are casting an array of

Object objects into an array of type T

3-36

Example of using Constructor

to create a Stack of Numbers

top

stack

What happens in memory when an ArrayStack object

is created using the following statement?

ArrayStack<Integer> s =

 new ArrayStack<Integer>(5);

0

? ? ? ? ?

s

Technically, the instance variables lie

inside the stack object, but the array

referenced by stack lies outside it

0 1 2 3 4

3-37

Example: the same ArrayStack object

after four items have been pushed on

top

stack

4

?

s

41

56 17

32

0

1

2

3

4

3-38

//---

// Adds the specified element to the top of the stack,

// expanding the capacity of the stack array if necessary

//---

public void push (T element)

{

 if (top == stack.length)

 expandCapacity();

 stack[top] = element;

 top++;

}

Where in the array is the element added?

The push()

operation

3-39

Managing Capacity

• An array has a particular number of cells when
it is created (its capacity), so the array's
capacity is also the stack's capacity

• What happens when we want to push a new
element onto a stack that is full, i.e. add it to
an array that is at capacity?

1. The push method could throw an exception

2. It could return some kind of status indicator
(e.g. a boolean value true or false, that
indicates whether the push was successful
or not)

3. It could automatically expand the capacity of
the array

3-40

Discussion

• What are the implications to the class

using the stack, of each of the three

solutions?

3-41

//---

// Helper method to create a new array to store the

// contents of the stack, with twice the capacity

//---

private void expandCapacity()

{

 T[] larger = (T[]) (new Object[stack.length*2]);

 for (int index=0; index < stack.length; index++)

 larger[index] = stack[index];

 stack = larger;

}
The expandCapacity()

helper method

3-42

//---

// Removes the element at the top of the stack and returns a

// reference to it. Throws an EmptyCollectionException if the

// stack is empty.

//---

public T pop() throws EmptyCollectionException

{

 if (isEmpty())

 throw new EmptyCollectionException(“Stack”);

 top--;

 T result = stack[top];

 stack[top] = null;

 return result;

}

Note the order: decrement top before getting

element from array (why?)

The pop()

operation

3-43

Stack Exceptions

• What happens if the user of the Stack
collection attempts to pop an element from
an empty stack?

• The designer of the implementation determines
how it will be handled:

• The user of the stack could check
beforehand, using the isEmpty method

• Here, the pop method throws an exception
if the stack is empty

• In this case the user of the stack can deal
with the problem (using a try/catch)

3-44

//---

// Returns a string representation of this stack.

//---

public String toString()

{

 String result = "";

 for (int index=0; index < top; index++)

 result = result + stack[index].toString() + "\n";

 return result;

}

The toString()

operation

3-45

//---

// Returns the number of elements in the stack

//---

public int size()

{

 return top;

}

//---

// Returns true if the stack is empty and false otherwise

//---

public boolean isEmpty()

{

 return (top == 0);

}

The size()

operation

The isEmpty()

operation

3-46

Exercise

• Fill in the code for the peek operation on

the next slide

3-47

//---

// Returns a reference to the element at the top of the stack.

// The element is not removed from the stack.

// Throws an EmptyCollectionException if the stack is empty.

//---

public T peek() throws EmptyCollectionException

{

}

The peek()

operation

3-48

Discussion

• At any point, how many elements are

there on the stack?

• What is the advantage of having the

bottom (rather than the top) of the stack

be at index 0 ?

• Can the stack be full?

3-49

The java.util.Stack Class

• The Java Collections API contains an

implementation of a Stack class with similar

operations

• It has some additional operations (e.g. search,

which returns distance from top of stack)

• Stack class is derived from the Vector class,

which has a dynamically “growable” array

• So it has some characteristics that are not

appropriate for a pure stack (e.g. inherited

method to add item in middle)

