Stack: a Linked Implementation
Objectives

• Examine a linked list implementation of the Stack ADT
Another Stack Implementation

• We will now explore a *linked list implementation* of the Stack collection
 • The elements of the stack are stored in *nodes of a linked list*
• It will implement the same interface (*Stack ADT*) as the array-based implementation; only the underlying data structure changes!
UML Description of the LinkedStack Class

<table>
<thead>
<tr>
<th>LinearNode</th>
<th>count</th>
<th>StackADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>element: T</td>
<td></td>
<td>push()</td>
</tr>
<tr>
<td>next: LinearNode<T></td>
<td>top</td>
<td>pop()</td>
</tr>
<tr>
<td>getCount()</td>
<td>peek()</td>
<td>peek()</td>
</tr>
<tr>
<td>setNext()</td>
<td>isEmpty()</td>
<td>isEmpty()</td>
</tr>
<tr>
<td>getElement()</td>
<td>size()</td>
<td>size()</td>
</tr>
<tr>
<td>setElement()</td>
<td>toString()</td>
<td>toString()</td>
</tr>
</tbody>
</table>

0..* 1

push() pop() peek() isEmpty() size() toString()
Linked Implementation of a Stack

• Recall that we need a container to hold the data elements, and something to indicate the top of the stack

• Our container will be a linked list of nodes, with each node containing a data element

• The top of the stack will be the first node of the linked list
 • So, a reference to the first node of the linked list (top) is also the reference to the whole linked list!

• We will also need to keep track of the number of elements in the stack (count)
Linked Implementation of a Stack

A stack s with 4 elements

After pushing a fifth element

The stack s with 4 elements:

- **Top**: 4
- **Count**: 4

After pushing a fifth element:

- **Top**: 5
- **Count**: 5
Discussion

• Where does all the activity take place in a stack (i.e. the pushes and the pops)?
• So, where is this happening in the linked list implementation?
Linked Implementation of a Stack

After popping an element

After popping another element
The LinkedStack Class

• Note that it is called “LinkedStack.java” only to differentiate it for us from the array implementation “ArrayStack.java”

• The nodes in the linked list are represented by the LinearNode class defined in the previous topic

• The attributes (instance variables) are:
 • top: a reference to the first node (i.e. a reference to the linked list)
 • So it is of type LinearNode<T>
 • count: a count of the current number of elements in the stack
public LinkedStack ()
{
 top = null;
 count = 0;
}
// Adds the specified element to the top of the stack.

public void push (T element) {
 LinearNode<T> temp = new LinearNode<T> (element);
 temp.setNext(top);
 top = temp;
 count++;
}

Where in the linked list is the element added?

The push() operation
// Removes the element at the top of the stack and returns a reference to it. Throws an EmptyCollectionException if the stack is empty.

public T pop() throws EmptyCollectionException {
 if (isEmpty())
 throw new EmptyCollectionException("Stack");
 T result = top.getElement();
 top = top.getNext();
 count--;
 return result;
}

The pop() operation

From where in the linked list is the element removed?
The Other Operations

• Write the code for the methods
 • peek
 • isEmpty
 • size
 • toString
Discussion

• Where does the stack grow and shrink?
• What happens when the stack is empty?
• Can the stack be full?