Sorting

Using ADTs to Implement Sorting Algorithms
Objectives

• Examine several sorting algorithms that can be implemented using collections and in-place:

 * Insertion Sort
 * Selection Sort
 * Quick Sort

• Analyse the time complexity of these algorithms
Sorting Problem

• Suppose we have an unordered list of objects that we wish to have sorted into ascending order

• We will discuss the implementation of several sort methods with a header of the form:

```java
public void someSort(UnorderedList list)
// precondition: list holds a sequence of objects in some random order
// postcondition: list contains the same objects, now sorted into ascending order
```
Comparing Sorts

- We will compare the following sorts:
 - *Insertion Sort* using stacks and in-place
 - *Selection Sort* using queues and in-place
 - *Quick Sort*

- Assume that there are \(n \) items to be sorted into ascending order
Insertion Sort

- *Insertion Sort* orders a sequence of values by repetitively inserting the next value into a *sorted subset* of the sequence.

- More specifically:
 - Consider the first item to be a *sorted subsequence* of length 1.
 - Insert the second item into the *sorted subsequence*, now of length 2.
 - Repeat the process, always inserting the first item from the *unsorted portion* into the *sorted subsequence*, until the entire sequence is in order.
Insertion Sort Algorithm

Example: sorting a sequence of `Integer` objects

Value 5 is to be inserted where the 8 is: reference to 8 will be copied to where the 5 is, the 5 will be put in the vacated position, and the sorted subsequence now has length 2.
2 will be inserted here

5 8 2 6 9 4 6

2 5 8 6 9 4 6

6 will be inserted here

2 5 8 6 9 4 6

2 5 6 8 9 4 6
And we’re done!
Insertion Sort using Stacks

Approach to the problem:

- Use two temporary stacks `sorted` and `temp`, both of which are originally empty.
- The contents of `sorted` will always be in order, with the smallest item on the top of the stack.
 - This will be the “sorted subsequence”
- `temp` will temporarily hold items that need to be “shifted” out in order to insert the new item in the proper place in `sorted`
Algorithm insertionSort \((A, n)\)

In: Array \(A\) storing \(n\) elements

Out: Sorted array

sorted = empty stack
temp = empty stack

for \(i = 0\) to \(n-1\) do {
 while (sorted is not empty) and (sorted.peek() < \(A[i]\)) do
 temp.push (sorted.pop())
 sorted.push (\(A[i]\))
 while temp is not empty do
 sorted.push (temp.pop())
}

for \(i = 0\) to \(n-1\) do
 \(A[i] = \) sorted.pop()
Insertion Sort

sorted

temp
Insertion Sort

sorted

8

temp
Insertion Sort

8 5

sorted

5 8

temp

13-14
Insertion Sort

sorted

8 5 2 6 9 4 6

temp

2 5 8
Insertion Sort

8 5 2 6 9 4 6

sorted

2
5
8

temp
Insertion Sort

sorted:

5
8

temp:

2
Insertion Sort

8 5 2 6 9 4 6

sorted

8

temp

5 2
Insertion Sort

sorted

(temp)

8 5 2 6 9 4 6

6 8

5 2
Insertion Sort

8 5 2 6 9 4 6

sorted
temp

5 6 8 2
Insertion Sort

sorted

2
5
6
8

temp

8 5 2 6
Insertion Sort
Insertion Sort

sorted

temp

8 5 2 6 9 4 6
Insertion Sort
Insertion Sort

sorted: 8 5 2 6 9 4 6

temp: 6 5 2
Insertion Sort

sorted

temp

8 5 2 6 9 4 6

8 6 5 2
Insertion Sort

sorted: 9

temp: 8 6 5 2
Insertion Sort

sorted: [8, 5, 2, 6, 9, 4, 6]

temp: [8, 9, 6, 5, 2]
Insertion Sort

sorted:

8 5 2 6 9

temp:

6 8 9

5 2
Insertion Sort

sorted

8 5 2 6 9 4 6

temp

5 6 8 9

2
Insertion Sort

sorted: 8, 5, 2, 6, 9

temp: 4, 6

2
5
6
8
9
Insertion Sort

sorted: 8 5 2 6 9 4 6

temp: 2 4 5 6 6 6 8 9
Insertion Sort
Insertion Sort
Insertion Sort

2 4 5 6 6 8 9

sorted
temp
Analysis of Insertion Sort Using Stacks

• Each time through the outer for loop, one more item is taken from the array and put into place on sorted. So the outer loop is repeated n times. Consider one iteration of the for loop:
 • Assume that there are i items in sorted. Worst case: every item has to be popped from sorted and pushed onto temp, so i pops and i pushes
 • New item A[i] is pushed onto sorted
 • Items in temp are popped and pushed onto sorted, so i pops and i pushes
 • If we implement the stacks using a singly linked list, each stack operation performs a constant number of primitive operations.
Analysis of Insertion Sort Using Stacks

Hence, assuming that sorted has i items, one iteration of the first `while` loop performs a constant number c_1 of primitive operations and the loop is repeated i times in the worst case, so the number of operations that it performs is ic_1.

The second `while` loop also performs a constant number c_2 of operations per iteration and the loop is repeated i times in the worst case, so it performs ic_2 operations.

Pushing $A[i]$ into the stack performs a constant number c_3 of operations.

Therefore one iteration of the `for` loop performs

$$ic_1 + ic_2 + c_3$$

operations.
Analysis of Insertion Sort Using Stacks

The outer for loop is executed \(n \) times, but each time the number of elements in sorted increases by 1, from 0 to \((n-1) \)

- So, the total number of operations performed by the outer for loop, in the worst case, is
 \[
 (0 \times c_1 + 0 \times c_2 + c_3) + (1 \times c_1 + 1 \times c_2 + c_3) + (2 \times c_1 + 2 \times c_2 + c_3) + \ldots + (n-1) \times c_1 + (n-1) \times c_2 + c_3 = n(n-1)(c_1 + c_2)/2 + n \times c_3
 \]
- Then there are \(n \times c_4 \) additional operations to move the sorted items back onto the array, where \(c_4 \) is a constant. Finally, creating the empty stacks requires a constant number \(c_5 \) of operations.
- So, the total number of operations performed by the algorithm is \(n(n-1)(c_1 + c_2)/2 + n \times c_3 + n \times c_4 + c_5 \), which is \(O(n^2) \).
Discussion

• Is there a best case?
 • Yes: the items are already sorted, but in reverse order (largest to smallest)
 • What is the time complexity then?

• What is the worst case?
 • The items are already sorted, in the correct order!!
 • Why is this the worst case?
In-Place Insertion Sort

In-Place: the algorithm does not use auxiliary data structures.
In-Place Insertion Sort

sorted

8 → 8

5

8 → 2 → 6 → 9 → 4 → 6
In-Place Insertion Sort

sorted

5 8 2 6 9 4 6
In-Place Insertion Sort
In-Place Insertion Sort

sorted

2 → 2 → 5 → 8 → 9 → 4 → 6

6
In-Place Insertion Sort
In-Place Insertion Sort

sorted

2 5 6 8 9 4 6

4
In-Place Insertion Sort

sorted

2 → 4 → 5 → 6 → 8 → 9 → 6
In-Place Insertion Sort

2 4 5 6 8 9 6

sorted

6
In-Place Insertion Sort

sorted

2 4 5 6 6 8 9
Algorithm insertionSort (A,n)
In: Array A storing n values
Out: {Sort A in increasing order}

```
for i = 1 to n-1 do {
    // Insert A[i] in the sorted sub-array A[0..i-1]
    temp = A[i]
    j = i - 1
    while (j >= 0) and (A[j] > temp) do {
        j = j - 1
    }
    A[j+1] = temp
}
```
Selection Sort

• *Selection Sort* orders a sequence of values by repetitively putting a particular value into its *final* position

• More specifically:
 • Find the *smallest value* in the sequence
 • Switch it with the value in the *first position*
 • Find the *next smallest value* in the sequence
 • Switch it with the value in the *second position*
 • Repeat until all values are in their proper places
Selection Sort Algorithm

Initially, the *entire* container is the “*unsorted portion*” of the container.
Sorted portion is coloured *red*.

Find smallest element in unsorted portion of container

Interchange the smallest element with the one at the front of the unsorted portion

Find smallest element in unsorted portion of container
Interchange the smallest element with the one at the front of the unsorted portion

Find smallest element in unsorted portion of container

Interchange the smallest element with the one at the front of the unsorted portion
Find smallest element in unsorted portion of container

Interchange the smallest element with the one at the front of the unsorted portion

After n-1 repetitions of this process, the last item has automatically fallen into place
Selection Sort Using a Queue

Approach to the problem:

- Create a queue *sorted*, originally empty, to hold the items that have been sorted *so far*
- The contents of *sorted* will always be in order, with new items added at the end of the queue
Selection Sort Using Queue Algorithm

• While the unordered list list is not empty:
 • *remove* the smallest item from list and *enqueue* it to the end of sorted
• The list is now empty, and sorted contains the items in ascending order, from front to rear
• To restore the original list, *dequeue* the items one at a time from sorted, and *add them to the rear* of list
Algorithm selectionSort(list)

`temp = empty queue`

`sorted = empty queue`

while list is not empty **do** {

`smallestSoFar = remove first item from list`

while list is not empty **do** {

`item = remove first item from list`

`if item < smallestSoFar`

`temp.enqueue(smallestSoFar)`

`smallestSoFar = item`

`else temp.enqueue(item)`

`}`

`sorted.enqueue(smallestSoFar)`

while temp is not empty **do** {

`add temp.dequeue() to the end of list`

}`

while sorted is not empty **do** {

`add sorted.dequeue() to the end of list`
Selection Sort is an \(\mathcal{O}(n^2) \) algorithm
The analysis is similar to that of Insertion Sort. We will leave it as an exercise for you to analyze this algorithm.
Discussion

• Is there a best case?
 • No, we have to step through the entire remainder of the list looking for the next smallest item, no matter what the ordering

• Is there a worst case?
 • No
In-Place SelectionSort

Selection sort without using any additional data structures. Assume that the values to sort are stored in an array.

\[8 \quad 5 \quad 2 \quad 6 \quad 9 \quad 4 \quad 6 \]
In-Place SelectionSort

First find the smallest value
In-Place SelectionSort

Swap it with the element in the first position of the array.

8 5 2 6 9 4 6
In-Place SelectionSort

Swap it with the element in the first position of the array.

Diagram:

```
```
In-Place Selection Sort

(sorted)
In-Place SelectionSort

Now consider the rest of the array and again find the smallest value.
In-Place Selection Sort

Swap it with the element in the second position of the array, and so on.
In-Place Selection Sort
In-Place SelectionSort

sorted

smallest value
In-Place SelectionSort

sorted

swap

smallest value
In-Place Selection Sort

sorted

2 4 5 6 9 8 6
In-Place Selection Sort

sorted

2 4 5 6 6 8 9

smallest value
In-Place SelectionSort
Algorithm selectionSort \((A,n)\)

In: Array \(A\) storing \(n\) values
Out: \{Sort \(A\) in increasing order\}

\[
\text{for } i = 0 \text{ to } n-2 \text{ do } \{
 \quad \text{// Find the smallest value in unsorted subarray } A[i..n-1]
 \quad \text{smallest} = i
 \text{for } j = i + 1 \text{ to } n - 1 \text{do } \{
 \quad \text{if } A[j] < A[\text{smallest}] \text{ then}
 \quad \quad \text{smallest} = j
 \}\
 \quad \text{// Swap } A[\text{smallest}] \text{ and } A[i]
 \quad \text{temp} = A[\text{smallest}]
 \quad A[\text{smallest}] = A[i]
 \quad A[i] = \text{temp}
\}
Quick Sort

• **Quick Sort** orders a sequence of values by **partitioning** the list around one element (called the **pivot** or **partition element**), then sorting each partition

• More specifically:
 • Choose one element in the sequence to be the **pivot**
 • Organize the remaining elements into three groups (**partitions**): those **greater than** the pivot, those **less than** the pivot, and those **equal** to the pivot
 • Then sort each of the first two partitions (recursively)
Quick Sort

Partition element or *pivot*:

- The choice of the *pivot* is arbitrary
- For efficiency, it would be nice if the pivot divided the sequence roughly in half
 - However, the algorithm will work in any case
Quick Sort

Approach to the problem:

• We put all the items to be sorted into a container (e.g. an array)
• We choose the pivot (partition element) as the first element from the container
• We use a container smaller to hold the items that are smaller than the pivot, a container larger to hold the items that are larger than the pivot, and a container equal to hold the items of the same value as the pivot
• We then recursively sort the items in the containers smaller and larger
• Finally, copy the elements from smaller back to the original container, followed by the elements from equal, and finally the ones from larger
QuickSort

6 3 2 6 9 4 8
QuickSort

pivot or partition element

smaller

larger

equal
QuickSort

pivot or partition element

smaller
equal
larger

6 3 2 6 9 4 8

6
QuickSort

pivot or partition element

smaller

larger

equal
QuickSort

pivot or partition element

6 3 2 6 9 4 8

smaller
3 2

equal

larger

6
QuickSort

pivot or partition element

smaller

larger

equal
QuickSort

pivot or partition element

smaller

larger

equal
QuickSort

pivot or partition element

smaller

3 2 4

larger

9 8

equal

6 6
QuickSort

Sort this list

smaller

3 2 4

larger

9 8

equal

6 6
QuickSort

Sort this list

smaller

larger

2
3
4
9
8
6
3
2
6
9
4
8
9
6
6
QuickSort

Sort this list
QuickSort

Sort this list
QuickSort

Copy data back to original list

smaller

larger

equal
QuickSort

Copy data back to original list
QuickSort

Copy data back to original list

smaller

larger

equal
QuickSort

Copy data back to original list

smaller

larger

2 3 4 6 6 8 9

6 6
QuickSort

sorted!

smaller

2 3 4

equal

6 6

larger

8 9

8 9
QuickSort

How to sort this list?
QuickSort

pivot

3 2 4

smaller

larger

equal
QuickSort

3
2
4

smaller

larger

equal

2

4

3
QuickSort

sort lists

larger

smaller

equal
QuickSort

smaller
larger

copy data back

2
3
4

equal

3
Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If \(n > 1 \) then {

smaller, equal, larger = new arrays of size \(n \)

\(n_s = n_e = n_l = 0 \)

pivot = A[0]

}
Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {

smaller, equal, larger = new arrays of size n

\[n_s = n_e = n_l = 0 \]

pivot = A[0]

for i = 0 to n-1 do // Partition the values

}\}
Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {
 smaller, equal, larger = new arrays of size n
 n_s = n_e = n_l = 0
 pivot = A[0]
 for i = 0 to n-1 do // Partition the values
 if A[i] = pivot then equal[n_e++] = A[i]
Algorithm quicksort(A,n)

In: Array A storing n values
Out: {Sort A in increasing order}

If n > 1 then {
 smaller, equal, larger = new arrays of size n
 n_s = n_e = n_l = 0
 pivot = A[0]
 for i = 0 to n-1 do // Partition the values
 if A[i] = pivot then equal[n_e++] = A[i]
 else if A[i] < pivot then smaller[n_s++] = A[i]
 }
}
Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If $n > 1$ then {
 smaller, equal, larger = new arrays of size n
 $n_s = n_e = n_l = 0$
 pivot = A[0]
 for $i = 0$ to $n-1$ do // Partition the values
 if $A[i] = pivot$ then equal[n_e++] = $A[i]$
 else if $A[i] < pivot$ then smaller[n_s++] = $A[i]$
 else larger[n_l++] = $A[i]$
}
Algorithm quicksort(A,n)
In: Array A storing n values
Out: {Sort A in increasing order}
If n > 1 then {
 smaller, equal, larger = new arrays of size n
 n_s = n_e = n_l = 0
 pivot = A[0]
 for i = 0 to n-1 do // Partition the values
 if A[i] = pivot then equal[n_e++] = A[i]
 else if A[i] < pivot then smaller[n_s++] = A[i]
 else larger[n_l++] = A[i]
 quicksort(smaller,n_s)
}

Algorithm quicksort(A, n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {
 smaller, equal, larger = new arrays of size n
 n_s = n_e = n_l = 0
 pivot = A[0]
 for i = 0 to n-1 do // Partition the values
 if A[i] = pivot then equal[n_e++] = A[i]
 else if A[i] < pivot then smaller[n_s++] = A[i]
 else larger[n_l++] = A[i]
 quicksort(smaller, n_s)
 quicksort(larger, n_l)
}
Algorithm quicksort(A, n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {
 smaller, equal, larger = new arrays of size n
 \(n_s = n_e = n_l = 0 \)
 pivot = A[0]
 for i = 0 to n-1 do // Partition the values
 if A[i] = pivot then equal[\(n_e ++ \)] = A[i]
 else if A[i] < pivot then smaller[\(n_s ++ \)] = A[i]
 else larger[\(n_l ++ \)] = A[i]
 quicksort(smaller, n_s)
 quicksort(larger, n_l)
 i = 0
 for j = 0 to n_s do A[i++] = smaller[j]
 for j = 0 to n_e do A[i++] = equal[j]
 for j = 0 to n_l do A[i++] = larger[j]
}
Analysis of Quick Sort

• We will look at two cases for Quick Sort:
 • **Worst case**
 • When the pivot element is the *largest* or *smallest* item in the container (why is this the worst case?)
 • **Best case**
 • When the pivot element is the *middle* item (why is this the best case?)
Worst Case Analysis:

- We will count the number of operations needed to sort an initial container of n items, $T(n)$
- Assume that the pivot is the *largest* item in the container and *all values in the array are different*
- $n \leq 1$; the algorithm performs just one operation to test that $n \leq 1$, so $T(0) = 1$, $T(1) = 1$
- $n > 1$; the pivot is chosen from the container (this needs a constant number c of operations) and then the n items are redistributed into three containers:
 - *smaller* is of size $n-1$
 - *bigger* is of size 0
 - *equal* is of size 1

 Moving each item requires a constant number c' of operations, so this step performs $c + c'(n)$ operations.
• Then we have two recursive calls:
 • Sort **smaller**, which is of size \(n-1 \)
 • Sort **bigger**, which is of size \(0 \)
• So, \(T(n) = c + c'(n) + T(n-1) + T(0) \)
 • But, the number of operations required to sort a container of size \(0 \) is \(1 \)
 • And, the number of operations required to sort a container of size \(k \) in general is
 \[
 T(k) = c + c'(k) + (\text{the number of operations needed to sort a container of size } k-1) = c + c'(k) + T(k-1)
 \]
• So, the total number of operations $T(n)$ performed by quicksort is

$$T(n) = c + c'(n) + T(n-1)$$

$$= c + c'(n) + c + c'(n) + T(n-2)$$

$$= c + c'(n) + c + c'(n) + \ldots + c + c'(1) + T(0)$$

$$= c(n) + c' \times n^* (n+1)/2 + 1$$

$$= c'n^2 / 2 + n(c + c'/2) + 1$$

• So, the **worst case** time complexity of Quick Sort is $O(n^2)$
Best Case Analysis

• The best case occurs when the pivot element is chosen so that the two new containers are as close as possible to having the same size

• It is beyond the scope of this course to do the analysis, but it turns out that the best case time complexity for Quick Sort is $O(n \log_2 n)$

• And it turns out that the average time complexity for Quick Sort is the same
Summary

• *Insertion Sort* is $O(n^2)$
• *Selection Sort* is $O(n^2)$
• *Quick Sort* is (in the average case) $O(n \log_2 n)$

• Which one would you choose?