
Sorting

Using ADTs to Implement

Sorting Algorithms

13-2

Objectives

• Examine several sorting algorithms that

can be implemented using collections and

in-place:

Insertion Sort

Selection Sort

Quick Sort

• Analyse the time complexity of these

algorithms

13-3

Sorting Problem

• Suppose we have an unordered list of objects

that we wish to have sorted into ascending order

• We will discuss the implementation of several

sort methods with a header of the form:

public void someSort(UnorderedList list)

// precondition: list holds a sequence of objects in

// some random order

// postcondition: list contains the same objects,

// now sorted into ascending order

13-4

Comparing Sorts

• We will compare the following sorts:

• Insertion Sort using stacks and in-place

• Selection Sort using queues and in-place

• Quick Sort

• Assume that there are n items to be

sorted into ascending order

13-5

Insertion Sort
• Insertion Sort orders a sequence of values by

repetitively inserting the next value into a sorted
subset of the sequence

• More specifically:

• Consider the first item to be a sorted
subsequence of length 1

• Insert the second item into the sorted
subsequence, now of length 2

• Repeat the process, always inserting the first
item from the unsorted portion into the sorted
subsequence, until the entire sequence is in
order

13-6

Insertion Sort Algorithm

8 5 2 6 9 4 6

Sorted subsequence Value to be

“inserted”

5 8 2 6 9 4 6

Value 5 is to be inserted where the 8 is: reference to 8 will be

copied to where the 5 is, the 5 will be put in the vacated

position, and the sorted subsequence now has length 2

Example: sorting

a sequence of

Integer objects

13-7

5 8 2 6 9 4 6

2 will be inserted here

2 5 8 6 9 4 6

2 5 8 6 9 4 6

6 will be inserted here

2 5 6 8 9 4 6

13-8

2 5 6 8 9 4 6

9 will be inserted here

2 5 6 8 9 4 6

2 5 6 8 9 4 6

4 will be inserted here

2 4 5 6 8 9 6

13-9

2 4 5 6 8 9 6

6 will be inserted here

2 4 5 6 6 8 9

And we’re done!

13-10

Insertion Sort using Stacks

Approach to the problem:

• Use two temporary stacks sorted and temp,

both of which are originally empty

• The contents of sorted will always be in order,

with the smallest item on the top of the stack

• This will be the “sorted subsequence”

• temp will temporarily hold items that need to

be “shifted” out in order to insert the new item

in the proper place in sorted

13-11

Algorithm insertionSort (A,n)

In: Array A storing n elements

Out: Sorted array

sorted = empty stack

temp = empty stack

for i = 0 to n-1 do {

while (sorted is not empty) and (sorted.peek() < A[i]) do

temp.push (sorted.pop())

sorted.push (A[i])

while temp is not empty do

sorted.push (temp.pop())

}

for i = 0 to n-1 do

A[i] = sorted.pop()

13-12

Insertion Sort

8 5 2 6 9 4 6

sorted temp

13-13

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

13-14

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

13-15

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

13-16

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

13-17

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

13-18

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

13-19

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

6

13-20

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

6

13-21

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

6

13-22

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

6

13-23

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

6

13-24

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

6

13-25

Insertion Sort

8 5 2 6 9 4 6

sorted temp8

5

2

6

13-26

Insertion Sort

8 5 2 6 9 4 6

sorted temp

8

5

2

6

13-27

Insertion Sort

8 5 2 6 9 4 6

sorted temp

8

5

2

6

9

13-28

Insertion Sort

8 5 2 6 9 4 6

sorted temp

8 5

2

6

9

13-29

Insertion Sort

8 5 2 6 9 4 6

sorted temp

8 5

2

6

9

13-30

Insertion Sort

8 5 2 6 9 4 6

sorted temp

8

5

2

6

9

13-31

Insertion Sort

8 5 2 6 9 4 6

sorted temp

8

5

2

6

9

13-32

Insertion Sort

8 5 2 6 9 4 6

sorted temp

8

6

5

6

9

4

2

13-33

Insertion Sort

2 5 2 6 9 4 6

sorted temp

8

6

5

6

9

4

13-34

Insertion Sort

2 4 2 6 9 4 6

sorted temp

8

6

5

6

9

13-35

Insertion Sort

2 4 5 6 6 8 9

sorted temp

13-36

• Each time through the outer for loop, one more item is
taken from the array and put into place on sorted. So
the outer loop is repeated n times. Consider one
iteration of the for loop:

• Assume that there are i items in sorted.
Worst case: every item has to be popped from
sorted and pushed onto temp, so
i pops and i pushes

• New item A[i] is pushed onto sorted

• Items in temp are popped and pushed onto sorted,
so i pops and i pushes

• If we implement the stacks using a singly linked list,
each stack operation performs a constant number of
primitive operations.

Analysis of Insertion Sort Using Stacks

13-37

Hence, assuming that sorted has i items, one iteration of
the first while loop performs a constant number c1 of
primitive operations and the loop is repeated i times in
the worst case, so the number of operations that it
performs is ic1.

The second while loop also performs a constant number
c2 of operations per iteration and the loop is repeated i
times in the worst case, so it performs ic2 operations.

Pushing A[i] into the stack performs a constant number c3

of operations.

Therefore one iteration of the for loop performs

ic1 + ic2 + c3

operations.

Analysis of Insertion Sort Using Stacks

13-38

The outer for loop is executed n times, but each time the
number of elements in sorted increases by 1, from 0 to (n-
1)

• So, the total number of operations performed by the
outer for loop, in the worst case, is
(0×c1+0×c2+c3)+(1×c1+1×c2+c3)+(2×c1+2×c2+c3)+ …

(n-1)×c1+(n-1)×c2+c3 = n(n-1)(c1+c2)/2+n×c3

• Then there are n×c4 additional operations to move
the sorted items back onto the array, where c4 is a
constant. Finally, creating the empty stacks requires
a constant number c5 of operations.

• So, the total number of operations performed by the
algorithm is n(n-1)(c1+c2)/2+n×c3+n×c4+c5, which is
O(n2).

Analysis of Insertion Sort Using Stacks

13-39

Discussion

• Is there a best case?

• Yes: the items are already sorted, but in

reverse order (largest to smallest)

• What is the time complexity then?

• What is the worst case?

• The items are already sorted, in the correct

order!!

• Why is this the worst case?

13-40

In-Place Insertion Sort
In-Place: the algorithm does not use auxiliary data
structures.

8 5 2 6 9 4 6

sorted

5

13-41

In-Place Insertion Sort

8 8 2 6 9 4 6

sorted

5

13-42

In-Place Insertion Sort

85

2

6 9 4 6

sorted

2

13-43

In-Place Insertion Sort

55

2

6 9 4 6

sorted

8

13-44

In-Place Insertion Sort

2 8 9 4 6

sorted

52

6

13-45

In-Place Insertion Sort

2 8 9 4 6

sorted

65

9

13-46

In-Place Insertion Sort

2 8 9 4 6

sorted

65

4

13-47

In-Place Insertion Sort

2 6 8 9 6

sorted

54

13-48

In-Place Insertion Sort

2 6 8 9 6

sorted

54

6

13-49

In-Place Insertion Sort

2 6 6 8 9

sorted

54

Algorithm insertionSort (A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

for i = 1 to n-1 do {

// Insert A[i] in the sorted sub-array A[0..i-1]

temp = A[i]

j = i – 1

while (j >= 0) and (A[j] > temp) do {

A[j+1] = A[j]

j = j – 1

}

A[j+1] = temp

}

13-50

13-51

Selection Sort

• Selection Sort orders a sequence of values
by repetitively putting a particular value into its
final position

• More specifically:

• Find the smallest value in the sequence

• Switch it with the value in the first position

• Find the next smallest value in the sequence

• Switch it with the value in the second position

• Repeat until all values are in their proper
places

13-52

Selection Sort

Algorithm

6 4 92 3

2 4 96 3

2 4 96 3

Find smallest element in unsorted

portion of container

Interchange the smallest element

with the one at the front of the

unsorted portion

Find smallest element in unsorted

portion of container

Initially, the entire container is

the “unsorted portion” of the

container.

Sorted portion is coloured red.

13-53

2 3 96 4

Interchange the smallest element

with the one at the front of the

unsorted portion

2 3 96 4

Find smallest element in unsorted

portion of container

2 3 94 6

Interchange the smallest element

with the one at the front of the

unsorted portion

13-54

2 3 94 6

Find smallest element in unsorted

portion of container

2 3 64 9

Interchange the smallest element

with the one at the front of the

unsorted portion

After n-1 repetitions of this process, the last item has

automatically fallen into place

13-55

Selection Sort Using a Queue

Approach to the problem:

• Create a queue sorted, originally empty, to

hold the items that have been sorted so far

• The contents of sorted will always be in

order, with new items added at the end of the

queue

13-56

Selection Sort Using Queue Algorithm

• While the unordered list list is not
empty:

• remove the smallest item from list and
enqueue it to the end of sorted

• The list is now empty, and sorted
contains the items in ascending order,
from front to rear

• To restore the original list, dequeue the
items one at a time from sorted, and
add them to the rear of list

13-57

Algorithm selectionSort(list)

temp = empty queue

sorted = empty queue

while list is not empty do {

smallestSoFar = remove first item from list

while list is not empty do {

item = remove first item from list

if item < smallestSoFar {

temp.enqueue(smallestSoFar)

smallestSoFar = item

}

else temp.enqueue(item)

}

sorted.enqueue(smallestSoFar)

while temp is not empty do

add temp.dequeue() to the end of list

}

while sorted is not empty do

add sorted.dequeue() to the end of list

13-58

Selection Sort is an O(n2) algorithm

The analysis is similar to that of Insertion Sort. We
will leave it as an exercise for you to analyze this
algorithm.

13-59

Discussion

• Is there a best case?

• No, we have to step through the entire

remainder of the list looking for the next

smallest item, no matter what the ordering

• Is there a worst case?

• No

13-60

In-Place SelectionSort

8 5 2 6 9 4 6

Selection sort without using any additional data structures.

Assume that the values to sort are stored in an array.

13-61

In-Place SelectionSort

8 5 2 6 9 4 6

smallest

value

First find the smallest value

13-62

In-Place SelectionSort

8 5 2 6 9 4 6

smallest

value

swap

Swap it with the element in the first position of the array.

13-63

In-Place SelectionSort

2 5 8 6 9 4 6

Swap it with the element in the first position of the array.

13-64

In-Place SelectionSort

2 5 8 6 9 4 6

sorted

13-65

In-Place SelectionSort

2 5 8 6 9 4 6

sorted

smallest

value

Now consider the rest of the array and again find the

smallest value.

13-66

In-Place SelectionSort

2 5 8 6 9 4 6

sorted

smallest

value

swap

Swap it with the element in the second position of the

array, and so on.

13-67

In-Place SelectionSort

2 4 8 6 9 5 6

sorted

13-68

In-Place SelectionSort

2 4 8 6 9 5 6

sorted

smallest

value

13-69

In-Place SelectionSort

2 4 8 6 9 5 6

sorted

smallest

value

swap

13-70

In-Place SelectionSort

2 4 5 6 9 8 6

sorted

13-71

In-Place SelectionSort

2 4 5 6 6 8 9

sorted

smallest

value

13-72

In-Place SelectionSort

2 4 5 6 6 8 9

sorted

Algorithm selectionSort (A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

for i = 0 to n-2 do {

// Find the smallest value in unsorted subarray A[i..n-1]

smallest = i

for j = i + 1 to n - 1do {

if A[j] < A[smallest] then

smallest = j

}

// Swap A[smallest] and A[i]

temp = A[smallest]

A[smallest] = A[i]

A[i] = temp

} 13-73

13-74

Quick Sort

• Quick Sort orders a sequence of values by partitioning

the list around one element (called the pivot or partition

element), then sorting each partition

• More specifically:

• Choose one element in the sequence to be the pivot

• Organize the remaining elements into three groups

(partitions): those greater than the pivot, those less

than the pivot, and those equal to the pivot

• Then sort each of the first two partitions (recursively)

13-75

Quick Sort

Partition element or pivot:

• The choice of the pivot is arbitrary

• For efficiency, it would be nice if the pivot divided

the sequence roughly in half

• However, the algorithm will work in any case

13-76

Quick Sort
Approach to the problem:

• We put all the items to be sorted into a container (e.g.
an array)

• We choose the pivot (partition element) as the first
element from the container

• We use a container smaller to hold the items that are
smaller than the pivot, a container larger to hold the
items that are larger than the pivot, and a container
equal to hold the items of the same value as the pivot

• We then recursively sort the items in the containers
smaller and larger

• Finally, copy the elements from smaller back to the
original container, followed by the elements from equal,
and finally the ones from larger

13-77

QuickSort

6 3 2 6 9 4 8

13-78

QuickSort

6 3 2 6 9 4 8

pivot or partition element

smaller

larger

equal

13-79

QuickSort

6 3 2 6 9 4 8

pivot or partition element

smaller

larger

equal

6

13-80

QuickSort

6 3 2 6 9 4 8

pivot or partition element

larger

smaller

3 equal

6

13-81

QuickSort

6 3 2 6 9 4 8

pivot or partition element

larger

smaller

3 2 equal

6

13-82

QuickSort

6 3 2 6 9 4 8

pivot or partition element

larger

smaller

3 2

9

equal

6 6

13-83

QuickSort

6 3 2 6 9 4 8

pivot or partition element

larger

smaller

3 2 4

9

equal

6 6

13-84

QuickSort

6 3 2 6 9 4 8

pivot or partition element

larger

smaller

3 2 4

9

equal

6 6

8

13-85

QuickSort

6 3 2 6 9 4 8

larger

smaller

3 2 4

9

equal

6 6

8

Sort this list

13-86

QuickSort

6 3 2 6 9 4 8

larger

smaller

2 3 4

9

equal

6 6

8

Sort this list

13-87

QuickSort

6 3 2 6 9 4 8

larger

smaller

2 3 4

9

equal

6 6

8
Sort this list

13-88

QuickSort

6 3 2 6 9 4 8

larger

smaller

2 3 4

8

equal

6 6

9
Sort this list

13-89

QuickSort

6 3 2 6 9 4 8

larger

smaller

2 3 4

8

equal

6 6

9

Copy data back to original list

13-90

QuickSort

2 3 4 6 9 4 8

larger

smaller

2 3 4

8

equal

6 6

9

Copy data back to original list

13-91

QuickSort

2 3 4 6 6 4 8

larger

smaller

2 3 4

8

equal

6 6

9

Copy data back to original list

13-92

QuickSort

2 3 4 6 6 8 9

larger

smaller

2 3 4

8

equal

6 6

9

Copy data back to original list

13-93

QuickSort

2 3 4 6 6 8 9

larger

smaller

2 3 4

8

equal

6 6

9

sorted!

13-94

QuickSort

6 3 2 6 9 4 8

larger

smaller

3 2 4

9

equal

6 6

8

How to sort this list?

13-95

QuickSort

3 2 4

pivot

larger

smaller

equal

13-96

QuickSort

3 2 4

larger

smaller

equal

3

2

4

13-97

QuickSort

3 2 4

larger

smaller

equal

3

2

4

sort lists

13-98

QuickSort

2 3 4

larger

smaller

equal

3

2

4

copy data back

Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {

smaller, equal, larger = new arrays of size n

ns = ne = nl = 0

pivot = A[0]

= l

arger[j]

}
13-99

3 2 4

pivot = 3

larger

smaller

equal

A

ns=0

ne=0

nl=0

Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {

smaller, equal, larger = new arrays of size n

ns = ne = nl = 0

pivot = A[0]

for i = 0 to n-1 do // Partition the values

}
13-100

i

3 2 4

pivot

larger

smaller

equal

A

ns=0

ne=0

nl=0

Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {

smaller, equal, larger = new arrays of size n

ns = ne = nl = 0

pivot = A[0]

for i = 0 to n-1 do // Partition the values

if A[i] = pivot then equal[ne++] = A[i]

}
13-101

i

3 2 4

larger

smaller

equal

A

ns=0

ne=1

nl=0

3

pivot = 3

Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {

smaller, equal, larger = new arrays of size n

ns = ne = nl = 0

pivot = A[0]

for i = 0 to n-1 do // Partition the values

if A[i] = pivot then equal[ne++] = A[i]

else if A[i] < pivot then smaller[ns++] = A[i]

}
13-102

3 2 4

larger

smaller

equal

A

ns=1

ne=1

nl=0

3

i

pivot = 3

2

Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {

smaller, equal, larger = new arrays of size n

ns = ne = nl = 0

pivot = A[0]

for i = 0 to n-1 do // Partition the values

if A[i] = pivot then equal[ne++] = A[i]

else if A[i] < pivot then smaller[ns++] = A[i]

else larger[nl++] = A[i]

}
13-103

3 2 4

larger

smaller

equal

A

nl=1

3

i

pivot = 3

2

4

ns=1

ne=1

Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {

smaller, equal, larger = new arrays of size n

ns = ne = nl = 0

pivot = A[0]

for i = 0 to n-1 do // Partition the values

if A[i] = pivot then equal[ne++] = A[i]

else if A[i] < pivot then smaller[ns++] = A[i]

else larger[nl++] = A[i]

quicksort(smaller,ns)

}
13-104

3 2 4

larger

smaller

equal

A

nl=1

3

2

4

Sort

ns=1

ne=1

Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {

smaller, equal, larger = new arrays of size n

ns = ne = nl = 0

pivot = A[0]

for i = 0 to n-1 do // Partition the values

if A[i] = pivot then equal[ne++] = A[i]

else if A[i] < pivot then smaller[ns++] = A[i]

else larger[nl++] = A[i]

quicksort(smaller,ns)

quicksort(larger,nl)

}
13-105

3 2 4

larger

smaller

equal

A

nl=1

3

2

4

Sort

ns=1

ne=1

Algorithm quicksort(A,n)

In: Array A storing n values

Out: {Sort A in increasing order}

If n > 1 then {

smaller, equal, larger = new arrays of size n

ns = ne = nl = 0

pivot = A[0]

for i = 0 to n-1 do // Partition the values

if A[i] = pivot then equal[ne++] = A[i]

else if A[i] < pivot then smaller[ns++] = A[i]

else larger[nl++] = A[i]

quicksort(smaller,ns)

quicksort(larger,nl)

i = 0

for j = 0 to ns do A[i++] = smaller[j]

for j = 0 to ne do A[i++] = equal[j]

for j = 0 to nl do A[i++] = larger[j]

}
13-106

2 3 4

larger

smaller

equal

A

nl=1

3

2

4

ns=1

ne=1

i

13-107

Analysis of Quick Sort

• We will look at two cases for Quick

Sort :

• Worst case

• When the pivot element is the largest

or smallest item in the container (why

is this the worst case?)

• Best case

• When the pivot element is the middle

item (why is this the best case?)

13-108

Worst Case Analysis:
• We will count the number of operations needed to sort

an initial container of n items, T(n)

• Assume that the pivot is the largest item in the
container and all values in the array are different

• n ≤ 1; the algorithm performs just one operation to test
that n ≤ 1, so T(0) = 1, T(1) = 1

• n > 1; the pivot is chosen from the container
(this needs a constant number c of operations) and
then the n items are redistributed into three containers:

• smaller is of size n-1

• bigger is of size 0

• equal is of size 1

moving each item requires a constant number c’ of
operations, so this step performs c + c’(n) operations.

13-109

• Then we have two recursive calls:

• Sort smaller, which is of size n-1

• Sort bigger, which is of size 0

• So, T(n) = c + c’(n) + T(n-1) + T(0)

• But, the number of operations required to sort a

container of size 0 is 1

• And, the number of operations required to sort a

container of size k in general is

T(k) = c + c’(k) + (the number of operations

needed to sort a container of size k-1)

= c + c’(k) + T(k-1)

13-110

• So, the total number of operations T(n) performed by

quicksort is

T(n) = c + c’(n) + T(n-1)

= c + c’(n) + c + c’(n) + T(n-2)

= c + c’(n) + c + c’(n) + … + c + c’(1) + T(0)

= c(n) + c’×n*(n+1)/2 + 1

= c’n2 / 2 + n(c + c’/2) + 1

• So, the worst case time complexity of Quick Sort is

O(n2)

13-111

Best Case Analysis

• The best case occurs when the pivot
element is chosen so that the two new
containers are as close as possible to having
the same size

• It is beyond the scope of this course to do the

analysis, but it turns out that the best case

time complexity for Quick Sort is O(n log2 n)

• And it turns out that the average time

complexity for Quick Sort is the same

13-112

Summary

• Insertion Sort is O(n2)

• Selection Sort is O(n2)

• Quick Sort is (in the average case)

O(nlog2n)

• Which one would you choose?

