Analysis of Algorithms
Analysis of Algorithms- Review

• **Efficiency** of an algorithm can be measured in terms of :
 • *Time complexity*: a measure of the amount of time required to execute an algorithm
 • *Space complexity*: amount of memory required

• Which measure is more important?
 • It often depends on the limitations of the technology available at time of analysis (e.g. processor speed vs memory space)
Time Complexity Analysis

- **Objectives** of time complexity analysis:
 - To determine the efficiency of an algorithm by computing an *upper bound* on the amount of work that it performs
 - To compare different algorithms before deciding which one to implement

- Time complexity analysis for an algorithm is *independent* of the programming language and the machine used
Time Complexity Analysis

• Time complexity expresses the relationship between
 • the *size of the input*
 • and the *execution time* for the algorithm
Time Complexity Measurement

• Based on the number of *basic or primitive operations* in an algorithm:
 • Number of arithmetic operations performed
 • Number of comparisons
 • Number of Boolean operations performed
 • Number of array elements accessed
 • etc.

• Think of this as the *work* done
Example: Polynomial Evaluation

Consider the polynomial

\[P(x) = 4x^4 + 7x^3 - 2x^2 + 3x^1 + 6 \]

Suppose that exponentiation is carried out using multiplications. Two ways to evaluate this polynomial are:

Brute force method:

\[P(x) = 4\cdot x\cdot x\cdot x\cdot x + 7\cdot x\cdot x\cdot x - 2\cdot x\cdot x + 3\cdot x + 6 \]

Horner’s method:

\[P(x) = (((4\cdot x + 7) \cdot x - 2) \cdot x + 3) \cdot x + 6 \]
Method of analysis

• What are the *basic operations* here?
 • multiplication, addition, and subtraction

• We will look at the *worst case* (maximum number of operations) to get an *upper bound* on the work and thus of the running time of the algorithm
General form of a polynomial of degree \(n \) is

\[
P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x^1 + a_0
\]

where \(a_n \) is non-zero for all \(n \geq 0 \) (this is the worst case)
An analysis of Brute Force Method

\[P(x) = a_n \times x \times x \times \ldots \times x \times x + \]
\[a_{n-1} \times x \times x \times \ldots \times x \times x + \]
\[a_{n-2} \times x \times x \times \ldots \times x \times x + \]
\[\vdots + \]
\[a_2 \times x \times x + \]
\[a_1 \times x + \]
\[a_0 \]

- \(n \) multiplications
- \(n-1 \) multiplications
- \(n-2 \) multiplications
- \(\vdots \)
- \(2 \) multiplications
- \(1 \) multiplication
- \(n \) total additions
Number of operations needed in the **worst case** is

\[T(n) = n + (n-1) + (n-2) + \ldots + 3 + 2 + 1 + n \]

\[= n \frac{(n + 1)}{2} + n \text{ (see below)} \]

\[= \frac{n^2}{2} + \frac{3n}{2} \]

Sum of first n natural numbers:

Write the n terms of the sum in forward and reverse orders:

\[t(n) = 1 + 2 + 3 + \ldots + (n-2) + (n-1) + n \]

\[t(n) = n + (n-1) + (n-2) + \ldots + 3 + 2 + 1 \]

Add the corresponding terms:

\[2*t(n) = (n+1) + (n+1) + (n+1) + \ldots + (n+1) + (n+1) + (n+1) \]

\[= n (n+1) \]

Therefore, \[t(n) = n \frac{(n+1)}{2} \]
Analysis of Horner’s Method

\[P(x) = (\ldots (((a_n \ast x + a_{n-1}) \ast x + a_{n-2}) \ast x + \ldots + a_2) \ast x + a_1) \ast x + a_0 \]

1 multiplication
1 multiplication
1 multiplication
1 multiplication
1 multiplication

\(n \) total additions
Analysis of Horner’s Method

Number of operations needed in the worst case is:

\[T(n) = n + n = 2n \]
Big-Oh Notation

• Analysis of Brute Force and Horner’s methods came up with \textit{exact formulae} for the maximum number of operations.

• In general, though, we want to determine the \textit{running time}, not the number of operations: Thus, we use the Big-Oh notation introduced earlier …
Big-Oh : Formal Definition

- **Time complexity** $T(n)$ of an algorithm is $O(f(n))$ (we say “of the order $f(n)$”) if for some positive constant c and for all but finitely many values of n (i.e. as n gets large)

 $T(n) \leq c \cdot f(n)$

- What does this mean? this gives an **upper bound** on the number of operations, for sufficiently large n
Big-Oh Analysis

• We want the complexity function $f(n)$ to be an easily recognized *elementary function* that describes the performance of the algorithm
Big-Oh Analysis

Example: Polynomial Evaluation

• What is the time complexity $f(n)$ for Horner’s method?

 • $T(n) = 2n$, so we say that the number of multiplications in Horner’s method is $O(n)$ ("of the order of n") and that the time complexity of Horner’s method is $O(n)$.
Big-O Analysis

Example: Polynomial Evaluation

• What is the complexity $f(n)$ for the Brute Force method?

 • Choose the highest order (dominant) term of

 $T(n) = \frac{n^2}{2} + \frac{3n}{2}$

 so

 $T(n)$ is $O(n^2)$
Recall: Shape of Some Typical Functions

\[t(n) = n^3 \]
\[t(n) = n^2 \]
\[t(n) = n \log_2 n \]
Big-Oh Example: Polynomial Evaluation Comparison

<table>
<thead>
<tr>
<th>n</th>
<th>$T(n) = 2n$ (Horner)</th>
<th>$T(n) = \frac{n^2}{2} + \frac{3n}{2}$ (Brute Force)</th>
<th>$f(n) = n^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>230</td>
<td>400</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>5150</td>
<td>10000</td>
</tr>
<tr>
<td>1000</td>
<td>2000</td>
<td>501500</td>
<td>1000000</td>
</tr>
</tbody>
</table>

n is the degree of the polynomial.
Big-Oh Example: Polynomial Evaluation

\[f(n) = n^2 \]

\[T(n) = n^2/2 + 3n/2 \]

\[T(n) = n \]

of op’s

\(n \) (degree of polynomial)
Time Complexity and Input

- Running time can depend on the size of the input (e.g. sorting 5 items vs. 1000 items)
- Running time can also depend on the particular input (e.g. suppose the input is already sorted)
- This leads to several kinds of time complexity analysis:
 - **Worst case** analysis
 - **Average case** analysis
 - **Best case** analysis
Worst, Average, Best Case

- **Worst case analysis**: considers the maximum of the time over all inputs of size n
 - Used to find an upper bound on algorithm performance

- **Average case analysis**: considers the average of the time over all inputs of size n
 - Determines the average (or expected) performance

- **Best case analysis**: considers the minimum of the time over all inputs of size n
Discussion

• What are some difficulties with average case analysis?
 • Hard to determine
 • Depends on distribution of inputs (they might not be evenly distributed)

• So, we usually use worst case analysis (why not best case analysis?)
Example: Linear Search

- **The problem**: search an array A of size n to determine whether it contains some value key
- Return *array index* if found, -1 if not found

Algorithm linearSearch (A, n, key)

In: Array A of size n and value key

Out: Array index of key, if key in A; -1 if key not in A

```
    k = 0
    while (k < n-1) and (A[k] != key) do
        k = k + 1
    if A[k] = key then return k
    else return -1.
```
• Total amount of work done:
 • **Before loop**: a constant number c_1 of operations
 • **Each time through loop**: a constant number c_2 of operations (comparisons, the **and** operation, addition, and assignment)
 • **After loop**: a constant number c_3 of operations
 • **Worst case**: need to examine all n array locations, so the **while** loop iterates n times
 • So, $T(n) = c_1 + c_2n + c_3$, and the time complexity is $O(n)$
• **Average** case for a **successful** search:
 • Number of **while** loop iterations needed to find the key? 1 or 2 or 3 or 4 … or n
 • Assume that each possibility is equally likely
 • Average number of iterations performed by the **while** loop:
 \[
 \frac{1+2+3+ \ldots + n}{n} = \frac{n(n+1)/2}{n} = \frac{n+1}{2}
 \]
 • Average number of operations performed in the average case is \(c_1 + c_3 + c_2(n+1)/2\). The time complexity is therefore \(O(n)\)
Example: Binary Search

- Search a *sorted* array A of size n looking for the value key

- *Divide and conquer* approach:
 - Compute the middle index mid of the array
 - If key is found at mid, we are done
 - Otherwise repeat the approach on the half of the array that might still contain key
Binary Search Algorithm

Algorithm binarySearch (A,n,key)

In: Array A of size n and value key

Out: Array index of key, if key in A; -1 otherwise

```plaintext
first = 0
last = n-1
do {
    mid = (first + last) / 2
    if key < A[mid] then last = mid - 1
    else first = mid + 1
} while (A[mid] != key) and (first <= last)

if A[mid] = key then return mid
else return -1
```
• Number of operations performed before and after the loop is a constant c_1, and is independent of n

• Number of operations performed during a single execution of the loop is constant, c_2

• Time complexity depends on the number of times the loop is executed, so that is what we will analyze
Worst case: key is not found in the array

- Each time through the loop, at least half of the remaining locations are rejected:
 - After *first* time through, $\leq n/2$ remain
 - After *second* time through, $\leq n/4$ remain
 - After *third* time through, $\leq n/8$ remain
 - After *k^{th}* time through, $\leq n/2^k$ remain
• Suppose in the \textit{worst case} that the maximum number of times through the loop is k; we must express k in terms of n

• Exit the \texttt{do..while} loop when the number of remaining possible locations is less than 1 (that is, when $\texttt{first > last}$): this means that $n/2^k < 1$ and so $n > 2^k$.

Taking base-2 logarithms we get, $k < \log_2 n$.

Therefore, the total number of operations performed by the algorithm is at most $c_1 + c_2 \log_2 n$ and so the time complexity is $O(\log_2 n)$ or just $O(\log n)$.
Big-Oh Analysis in General

• To determine the time complexity of an algorithm:
 • Identify the basic operation(s)
 • Carefully analyze the most expensive parts of the algorithm: loops and calls
 • Express the number of operations as $f_1(n) + f_2(n) + \ldots$
 • Identify the dominant term f_i
 • Then the time complexity is $O(f_i)$
• **Examples of dominant terms:**
 - n dominates $\log_2(n)$
 - $n \log_2(n)$ dominates n
 - n^2 dominates $n \log_2(n)$
 - n^m dominates n^k when $m > k$
 - a^n dominates n^m for any $a > 1$ and $m \geq 0$

• That is, for sufficiently large n,

\[
\log_2(n) < n < n \log_2(n) < n^2 < \ldots < n^m < a^n
\]

for $a > 1$ and $m > 2$
Recall: Shape of Some Typical Functions

- $f(n) = n^3$
- $f(n) = n^2$
- $f(n) = n \log_2 n$
- $f(n) = n$
Examples of Big-Oh Analysis

• *Independent nested loops:*
  ```java
  int x = 0;
  for (int i = 1; i <= n/2; i++){
    for (int j = 1; j <= n*n; j++){
      x = x + i + j;
    }
  }
  ```

 • Number of iterations of inner loop is independent of the number of iterations of the outer loop (*i.e.* the value of *i*)
 • How many times through outer loop?
 • How many times through inner loop?
 • Time complexity of algorithm?
• **Dependent nested loops:**

```java
int x = 0;
for (int i = 1; i <= n; i++){
    for (int j = 1; j <= 3*i; j++){
        x = x + j;
    }
}
```

• Number of iterations of inner loop **depends on** the value of `i` in the outer loop

• On `ith` iteration of outer loop, how many times through inner loop?

• Total number of iterations of inner loop = sum for `i` running from `1` to `n`

• Time complexity of algorithm?
Usefulness of Big-Oh

• We can *compare algorithms* for efficiency, for example:
 • *Linear search* vs *binary search*
 • Different sort algorithms
 • Iterative vs recursive solutions
 (recall Fibonacci sequence!)

• We can *estimate actual run times* if we know the time complexity of the algorithm(s) we are analyzing
Estimating Run Times

- Assuming a million operations per second on a computer, here are some typical complexity functions and their associated runtimes:

<table>
<thead>
<tr>
<th>f(n)</th>
<th>n = 10^3</th>
<th>n = 10^5</th>
<th>n = 10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>\log_2(n)</td>
<td>10^{-5} sec.</td>
<td>1.7*10^{-5} sec.</td>
<td>2*10^{-5} sec.</td>
</tr>
<tr>
<td>n</td>
<td>10^{-3} sec.</td>
<td>0.1 sec.</td>
<td>1 sec.</td>
</tr>
<tr>
<td>n \log_2(n)</td>
<td>0.01 sec.</td>
<td>1.7 sec.</td>
<td>20 sec.</td>
</tr>
<tr>
<td>n^2</td>
<td>1 sec.</td>
<td>3 hours</td>
<td>12 days</td>
</tr>
<tr>
<td>n^3</td>
<td>17 mins.</td>
<td>32 years</td>
<td>317 centuries</td>
</tr>
<tr>
<td>2^n</td>
<td>10^{285} cent.</td>
<td>10^{10000} years</td>
<td>10^{100000} years</td>
</tr>
</tbody>
</table>
Discussion

• Suppose we want to perform a sort that is $O(n^2)$. What happens if the number of items to be sorted is 100000?

• Compare this to a sort that is $O(n \log_2(n))$. Now what can we expect?

• Is an $O(n^3)$ algorithm practical for large n?

• What about an $O(2^n)$ algorithm, even for small n? e.g. for a Pentium, runtimes are:

<table>
<thead>
<tr>
<th>n</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>11 sec.</td>
</tr>
<tr>
<td>40</td>
<td>3 hours</td>
</tr>
<tr>
<td>50</td>
<td>130 days</td>
</tr>
<tr>
<td>60</td>
<td>365 years</td>
</tr>
</tbody>
</table>
Intractable Problems

• A problem is said to be *intractable* if solving it by computer is impractical
• Algorithms with time complexity $O(2^n)$ take too long to solve even for moderate values of n
 • What are some examples we have seen?