Introduction to Analysis of Algorithms
Objectives

• To introduce the concept of analysing algorithms with respect to the time taken to have them executed
 • Purpose:
 • To see if an algorithm is practical
 • To compare different algorithms for solving a problem
 • (There will be much more on this later)
Introduction to Analysis of Algorithms

• One aspect of software quality is the efficient use of computer resources:
 • CPU time
 • Memory usage

• We frequently want to analyse algorithms with respect to execution time
 • Called time complexity analysis
 • For example, to decide which sorting algorithm will take less time to run
Time Complexity

• Analysis of time taken is based on:
 • Problem size (e.g. number of items to sort)
 • Primitive operations (e.g. comparison of two values)

• What we want to analyse is the relationship between
 • The size of the problem, \(n \)
 • And the time it takes to solve the problem, \(t(n) \)
 • Note that \(t(n) \) is a function of \(n \), so it depends on the size of the problem
Growth Functions

• This $t(n)$ is called a growth function.

• What does a growth function look like?
 • Example of a growth function for some algorithm:
 $t(n) = 15n^2 + 45n$
 • See the next slide to see how $t(n)$ changes as n gets bigger!
Example: $15n^2 + 45n$

<table>
<thead>
<tr>
<th>No. of items n</th>
<th>$15n^2$</th>
<th>$45n$</th>
<th>$15n^2 + 45n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>375</td>
<td>225</td>
<td>600</td>
</tr>
<tr>
<td>10</td>
<td>1,500</td>
<td>450</td>
<td>1,950</td>
</tr>
<tr>
<td>100</td>
<td>150,000</td>
<td>4,500</td>
<td>154,500</td>
</tr>
<tr>
<td>1,000</td>
<td>15,000,000</td>
<td>45,000</td>
<td>15,045,000</td>
</tr>
<tr>
<td>10,000</td>
<td>1,500,000,000</td>
<td>450,000</td>
<td>1,500,450,000</td>
</tr>
<tr>
<td>100,000</td>
<td>150,000,000,000</td>
<td>4,500,000</td>
<td>150,004,500,000</td>
</tr>
<tr>
<td>1,000,000</td>
<td>15,000,000,000,000</td>
<td>45,000,000</td>
<td>15,000,045,000,000</td>
</tr>
</tbody>
</table>
Comparison of Terms in $15n^2 + 45n$

• When n is small, which term is larger?
• But, as n gets larger, note that the $15n^2$ term grows more quickly than the $45n$ term
• Also, the constants 15 and 45 become irrelevant as n increases
• We say that the n^2 term is \textit{dominant} in this expression
Big-O Notation

• It is not usually necessary to know the \textit{exact} growth function

• The key issue is the \textit{asymptotic complexity} of the function: \textit{how it grows as }n\textit{ increases}

 • This is determined by the \textit{dominant term} in the growth function (the term that increases most quickly as }n\textit{ increases)

 • Constants and secondary terms become irrelevant as }n\textit{ increases
Big-O Notation

• The asymptotic complexity of the function is referred to as the order of the algorithm, and is specified by using Big-O notation
 • Example: \(O(n^2) \) means that the time taken by the algorithm grows like the \(n^2 \) function as \(n \) increases
 • \(O(1) \) means constant time, regardless of the size of the problem
Some Growth Functions and Their Asymptotic Complexities

<table>
<thead>
<tr>
<th>Growth Function</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t(n) = 17$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>$t(n) = 20n - 4$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$t(n) = 12n \cdot \log_2 n + 100n$</td>
<td>$O(n \cdot \log_2 n)$</td>
</tr>
<tr>
<td>$t(n) = 3n^2 + 5n - 2$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$t(n) = 2^n + 18n^2 + 3n$</td>
<td>$O(2^n)$</td>
</tr>
</tbody>
</table>
Comparison of Some Typical Growth Functions

\[t(n) = n^3 \]
\[t(n) = n^2 \]
\[t(n) = n \log_2 n \]
\[t(n) = n \]
Exercise: Asymptotic Complexities

<table>
<thead>
<tr>
<th>Growth Function</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t(n) = 5n^2 + 3n)</td>
<td>?</td>
</tr>
<tr>
<td>(t(n) = n^3 + \log_2 n - 4)</td>
<td>?</td>
</tr>
<tr>
<td>(t(n) = \log_2 n \times 10n + 5)</td>
<td>?</td>
</tr>
<tr>
<td>(t(n) = 3n^2 + 3n^3 + 3)</td>
<td>?</td>
</tr>
<tr>
<td>(t(n) = 2^n + 18n^{100})</td>
<td>?</td>
</tr>
</tbody>
</table>
Determining Time Complexity

- Algorithms frequently contain sections of code that are executed over and over again, i.e. *loops*
- So, *analysing loop execution* is basic to determining time complexity
Analysing Loop Execution

• A loop executes a certain number of times (say n), so the time complexity of the loop is n times the time complexity of the body of the loop

• *Example*: what is the time complexity of the following loop, in Big-O notation?

```java
x = 0;
for (int i=0; i<n; i++)
    x = x + 1;
```
• **Nested loops**: the body of the outer loop includes the inner loop

• **Example**: what is the time complexity of the following loop, in Big-O notation?

```c
for (int i=0; i<n; i++) {
    x = x + 1;
    for (int j=0; j<n; j++)
        y = y - 1;
}
```
More Loop Analysis Examples

```cpp
x = 0;
for (int i=0; i<n; i=i+2) {
    x = x + 1;
}
```

```cpp
x = 0;
for (int i=1; i<n; i=i*2) {
    x = x + 1;
}
```
More Loop Analysis Examples

```c
x = 0;
for (int i=0; i<n; i++)
    for (int j = i, j < n, j ++)
    {
        x = x + 1;
    }
```
Analysis of Stack Operations

• Stack operations are generally efficient, because they all work on only one end of the collection

• But which is more efficient: the array implementation or the linked list implementation?
Analysis of Stack Operations

• n is the number of items on the stack
• push operation for ArrayStack:
 • $O(1)$ if array is not full (why?)
 • What would it be if the array is full? (worst case)
• push operation for LinkedStack:
 • $O(1)$ (why?)
• pop operation for each?
• peek operation for each?