Recursion
Objectives

• Understand the underlying concepts of recursion
• Examine recursive methods and understand their processing steps
• Explain when recursion should and should not be used
• Demonstrate the use of recursion to solve problems
Recursive Definitions

• **Recursion**: defining something *in terms of itself*

• **Recursive definition**
 • Uses the word or concept being defined *in the definition itself*
 • Includes a **base case** that is defined directly, *without* self-reference
Recursive Definitions

• **Example**: define a *group of people*

 • **Iterative definition**:
 a *group* is 2 people, or 3 people, or 4 people, or …

 • **Recursive definition**:
 a *group* is: 2 people
 or, a *group* is: a *group* plus one more person
 • The concept of a group is used to define itself!
 • The *base case* is “a group is 2 people”
Exercise

• Give an iterative and a recursive definition of a sequence of characters

Iterative definition: a sequence of characters is ?

Recursive definition: a sequence of characters is ?
Recursive Definitions

• **Example**: consider the following *list of numbers*:

 24, 88, 40, 37

A list of numbers can be defined recursively:

list of numbers:

• is a *number*

• or a *number* comma *list of numbers*
Tracing a Recursive Definition

• To determine whether the sequence 24, 88, 40, 37 is a list of numbers, apply the recursive portion of the definition:

 24 is a number and “,” is a comma, so 24, 88, 40, 37 is a list of numbers if and only if 88, 40, 37 is a list of numbers

• Apply the same part of the definition to the sequence 88, 40, 37

• …

• Eventually, we will need to apply the base case of the definition
Is 24, 88, 40, 37 a list?

number comma 24, is 88, 40, 37 a list?

number comma 88, is 40, 37 a list?

number comma 40, is 37 a list?

Base case from the definition has been applied here

number 37

Yes: 24, 88, 40, 37 is a list
Recursive Definitions

• A recursive definition consists of two parts:
 • The **base case**: this defines the "simplest" case or starting point
 • The **recursive part**: this is the "general case", that describes all the other cases in terms of "smaller" versions of itself

• Why is a base case needed?
 • A definition without a non-recursive part causes *infinite recursion*
More Recursive Definitions

• Mathematical formulas can often be expressed recursively

• *Example*: the formula for *factorial* is:
 for any positive integer n, $n!$ (n factorial) is defined to be the product of all integers between 1 and n inclusive.

• Express this definition recursively

 $1! = 1$ \hspace{1cm} (the base case)

 $n! = n \times (n-1)!$ \hspace{1cm} for $n \geq 2$
Discussion

• **Recursion** is an alternative to *iteration*, and it is a very powerful problem-solving technique

• What is *iteration*? Repetition, as in a loop

• What is *recursion*? Defining something in terms of a *smaller* or *simpler* version of itself (why smaller/simpler?)
Recursive Programming

• *Recursion* is a programming technique in which a method can *call itself* to solve a problem

• A method in Java that invokes itself is called a *recursive method*, and must contain code for
 • the *base case*, and
 • the *recursive part*
Example of Recursive Programming

• Consider the problem of computing the sum of all the numbers between 1 and n inclusive

 e.g. if n is 5, the sum is

 \[1 + 2 + 3 + 4 + 5\]

• How can this problem be expressed recursively?
Recursive Definition of Sum of 1 to n

\[\sum_{k=1}^{n} k = n + \sum_{k=1}^{n-1} k \]

for n > 1

This reads as:

the sum of 1 to n is equal to n + the sum of 1 to n-1

What is the base case?
the sum of 1 to 1 = 1
Trace Recursive Definition of Sum of 1 to n

\[
\sum_{k=1}^{n} k = n + \sum_{k=1}^{n-1} k = n + (n-1) + \sum_{k=1}^{n-2} k
\]

\[
= n + (n-1) + (n-2) + \sum_{k=1}^{n-3} k
\]

\[
= n + (n-1) + (n-2) + \ldots + 3 + 2 + 1
\]
public static int sum (int n) {
 int res;
 if (n == 1)
 res = 1;
 else
 res = n + sum (n-1);
 return res;
}
How Recursion Works

• What happens when a method is invoked?
 • An activation record, or call frame or frame is created
 • The activation record is pushed onto the runtime stack or execution stack

• Every time that the algorithm makes a recursive call a new activation record is created and pushed into the execution stack.
Activation Record

• An *activation record* contains:
 • Address to return to after method ends
 • Method’s formal parameter variables
 • Method’s local variables
 • Return value (if any)
How Recursion Works

• When does the recursive method stop calling itself?
 • When the base case is reached

• What happens then?
 • That last invocation of the method completes, its activation record is popped off the execution stack, and control returns to the method that invoked it
How Recursion Works

• But which method invoked it? The previous invocation of the recursive method:
 • This previous invocation of the method then completes, its activation record is popped off the execution stack, and control returns to the method that invoked it,
 • … and so on until we get back to the first invocation of the recursive method
How Recursion Works

Consider the following program

```java
public static void main (String[] args) {
    int result = sum(4); // Addr 1
}
```

When the program is executed an activation record is created for method `main`. This activation record stores:

- The return address: in this case is the address of the part of the java virtual machine where the invocation to method main is made
- The variable `result`
- The parameter `args`
At this point the execution stack looks like the following figure. We assume that no parameter is passed to **main**, so **args** is null. Variable **result** has no value assigned to it yet, so we left its value blank. **Addr VM** denotes the address of the instruction of the virtual machine where method **main** was invoked.
Once the activation record for method `main` has been created and the values of the parameters and return address have been stored in it, the execution of method `main` starts. The first and only statement of `main` invokes method `sum`. This causes the creation of another activation record, which is pushed into the execution stack:

![Activation record for method sum](image)

Execution Stack
Since method `main` invokes `sum(4)`, the value of 4 is stored in `n`, the return address is the address of the statement

```java
int result = sum(4); // Addr 1
```

where method `sum` is invoked. We will call this address, `Addr 1`. The value of variable `res` and the return value have not been computed yet:

![Activation record for method `sum`]

<table>
<thead>
<tr>
<th>result</th>
<th>Args</th>
<th>Return address</th>
<th>Return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>null</td>
<td>Addr VM</td>
<td>Addr 1</td>
<td>4</td>
</tr>
</tbody>
</table>

Execution Stack
Once the activation record has been created, the execution of method `sum` starts. Since `n > 1`, the statement

```java
res = n + sum (n-1); // Addr 2
```

is executed. As this statement invokes method `sum`, a new activation record is created and pushed into the stack:

```
<table>
<thead>
<tr>
<th>res</th>
<th>n</th>
<th>ret. address</th>
<th>ret. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>res</td>
<td>4</td>
<td>Addr 1</td>
<td></td>
</tr>
<tr>
<td>res</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>null</td>
<td></td>
<td>Addr VM</td>
</tr>
</tbody>
</table>
```

Execution Stack
Since \(n = 4 \), the value of the parameter of method \(\text{sum} \) in
\[
\text{res} = n + \text{sum}(n-1); \quad // \text{Addr 2}
\]
is equal to 3; thus we store the value 3 in \(n \). The return address now is the address of the above statement, which we call \(\text{Addr 2} \). This address is stored in the activation record:
Then two more invocations to method `sum` with parameters 2 and 1 are made. After the last invocation the execution stack looks like this:

<table>
<thead>
<tr>
<th>res</th>
<th>ret. address</th>
<th>ret. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr 2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Addr 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Addr 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Addr 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>result</td>
<td>null</td>
<td>Addr VM</td>
</tr>
</tbody>
</table>
Since in the last invocation to method `sum` the value of `n` is 1 then method `sum` sets the value of `res` to 1 (base case):

```plaintext
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Addr 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>res</td>
<td>n</td>
<td>ret. address</td>
<td>ret. value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Addr 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>res</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>res</td>
<td>n</td>
<td>ret. address</td>
<td>ret. value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Addr 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>res</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>res</td>
<td>n</td>
<td>ret. address</td>
<td>ret. value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Addr 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>res</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>res</td>
<td>n</td>
<td>ret. address</td>
<td>ret. value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Addr</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>null</td>
<td></td>
</tr>
<tr>
<td>result</td>
<td>args</td>
<td>return address</td>
<td></td>
</tr>
</tbody>
</table>
```

Top
Then the method returns the value 1. The return value is stored in the activation record; the method ends …

<table>
<thead>
<tr>
<th>res</th>
<th>n</th>
<th>Addr 2</th>
<th>ret. address</th>
<th>ret. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>res</td>
<td>n</td>
<td>Addr 2</td>
<td>ret. address</td>
<td>ret. value</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>res</td>
<td>n</td>
<td>Addr 2</td>
<td>ret. address</td>
<td>ret. value</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>res</td>
<td>n</td>
<td>Addr 1</td>
<td>ret. address</td>
<td>ret. value</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>null</td>
<td></td>
<td>Addr VM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top
and hence the activation record is popped off the execution stack. The return address Addr 2 is recovered and execution continues at the statement in that address:

\[
\text{res} = \text{n} + \text{sum (n-1)}; \quad \text{// Addr 2}
\]

This call just finished and it returned the value 1, hence \text{res} takes value \(n + \text{sum}(n-1) = 2 + 1 = 3\).
Then the method returns the value 3. The activation record is popped off the stack and execution continues at the statement at address Addr 2, i.e.

\[\text{res} = \text{n} + \text{sum} (\text{n}-1); \] // Addr 2
now \(\text{res} \) takes value

\[
\text{res} = n + \text{sum} \ (n-1) = 3 + 3 = 6
\]

and the value

6 is returned
The activation record is popped off the stack and \textit{res} takes value \(6 + 4 = 10 \). This value is returned to statement in address \textit{Addr 1} and the activation record is popped off the stack:

\begin{verbatim}
public static void main (String[] args) {
 int result = sum(4); // Addr 1
}
\end{verbatim}
public static void main (String[] args) {
 int result = sum(4); // Addr 1
}

Note that we are back in method main. The value returned by sum(4) is stored in result and finally method main ends.
The last activation record is popped off the stack and control returns to the virtual machine. Note that the value returned by invoking `sum(4)` is 10.
Discussion: Recursion vs. Iteration

• Just because we can use recursion to solve a problem, doesn't mean we should!
• Would you use iteration or recursion to compute the sum of 1 to n? Why?
Exercise: Factorial Method

- Write an **iterative** method to compute the factorial of a positive integer.

- Write a **recursive** method to compute the factorial of a positive integer.

- Which do you think is faster, the recursive or the iterative version of the factorial method?
Example: Fibonacci Numbers

- **Fibonacci numbers** are those of this sequence:

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots$

- We can define these numbers recursively:

 $\text{fib}(1) = 1$
 $\text{fib}(2) = 1$

 $\text{fib}(n) = \text{fib}(n - 1) + \text{fib}(n - 2)$ for $n > 2$

- This sequence is also known as the solution to the *Multiplying Rabbits Problem* ☺
Multiplying Rabbits Problem

We have a pair of rabbits…
Multiplying Rabbits Problem

Rabbits can mate after 1 month ...

1 month

1 1

Number of rabbits
Multiplying Rabbits Problem

Rabbits can mate after 1 month and babies are born 1 month after mating.

Number of rabbits

1 1 2
Multiplying Rabbits Problem

How many rabbits will there be after n months?
Rabbits can mate after 1 month and babies are born 1 month after mating.
Multiplying Rabbits Problem

How many rabbits will there be?
Rabbits can mate after 1 month and are born after 1 month

Number of rabbits

1 1

1 month

1 month

1 month

1 2

3
Multiplying Rabbits Problem
Multiplying Rabbits Problem

1 month

1

1

1 month

1

1 month

2

1 month

3

1 month

5

1 month

8
This is the number of rabbits after 1 month, 2 months, 3 months, and so on:

\[1, 1, 2, 3, 5, 8, \ldots\]

This sequence is called the *Fibonacci* Sequence.
A Recursive Algorithm for computing Fibonacci Numbers

// Precondition (assumption) : n >= 1

public static int rfib (int n) {
 if ((n == 1) || (n == 2))
 return 1;
 else
 return rfib(n – 1) + rfib(n – 2);
}

An Iterative Method for Computing Fibonacci Numbers

```java
public static int ifib(int n) {
    if ((n == 1) || (n == 2))
        return 1;
    else {
        int prev = 1, current = 1, next;
        for (int i = 3; i <= n; i++) {
            next = prev + current;
            prev = current;
            current = next;
        }
        return next;
    }
}
```
Discussion

• Which solution looks simpler, the recursive or the iterative?

• Which one is \textit{much} faster? Why?

• \textbf{Note}: recursive and iterative code for computing Fibonacci numbers are posted in the Sample Code page of the course’s website - try running them both, and \textit{time them}!
Evaluating $\text{fib}(6)$

Letters: Give order of calls

Numbers: Return values

$\text{fib}(6)$

$\text{fib}(5) + \text{fib}(4)$

$\text{fib}(4) + \text{fib}(3)$

$\text{fib}(3) + \text{fib}(2)$

$\text{fib}(2) + \text{fib}(1)$

\begin{align*}
\text{fib}(2) + \text{fib}(1) &\quad \Rightarrow 1 \\
\text{fib}(3) + \text{fib}(2) &\quad \Rightarrow 2 \\
\text{fib}(4) + \text{fib}(3) &\quad \Rightarrow 3 \\
\text{fib}(5) + \text{fib}(4) &\quad \Rightarrow 5 \\
\text{fib}(6) &\quad \Rightarrow 8
\end{align*}
Application of Recursive Algorithms

- Quicksort for sorting a set of values
- Backtracking for solving problems in Artificial Intelligence
- Formal language definitions such as Backus-Naur Form (BNF)
 \[
 \text{<ident>} ::= \text{<letter>} \mid \text{<ident>\text{<letter>}} \mid \text{<ident>\text{<digit>}}
 \]
 etc.
- Evaluating algebraic expressions
- etc.
Recursive Solutions

• For some problems, recursive solutions are simpler and more elegant than iterative solutions

• **Classic example:** *Towers of Hanoi*

 • Puzzle invented in the 1880’s by a mathematician named Edouard Lucas

 • Based on a legend for which there are many versions, but they all involve monks or priests moving 64 gold disks from one place to another. When their task is completed, the world will end …
The Towers of Hanoi

- The *Towers of Hanoi* puzzle consists of:
 - Three vertical pegs
 - Several disks that slide onto the pegs
 - The disks are of varying sizes, initially placed on one peg with the largest disk on the bottom and increasingly smaller disks on top
The Towers of Hanoi Puzzle
The Towers of Hanoi

- **Goal**: move all of the disks from the leftmost peg to the rightmost one following these rules:
 - Only *one* disk can be moved at a time
 - A disk *cannot* be placed on top of a smaller disk
 - All disks must be on some peg (except for the one in transit)
Towers of Hanoi Solution: 4 disks

Goal: Move the disks from peg A to peg C
Towers of Hanoi Recursive Solution

• To move a stack of n disks from the original peg to the destination peg:
 • move the topmost n-1 disks from the original peg to the extra peg
 • move the largest disk from the original peg to the destination peg
 • move the n-1 disks from the extra peg to the destination peg
• The base case occurs when moving just the smallest disk (that is, when solving the 1-disk problem)
Algorithm `hanoi(iniPeg, destPeg, tmpPeg, n)`

In: initial peg, destination peg, third peg, number of disks

Out: Sequence of moves to put all disks in destPeg.

if \(n = 1 \) then Print (“Move disk from” iniPeg “to” destPeg)
else {
 `hanoi(iniPeg, tmpPeg, destPeg, n-1)`
 Print (“Move disk from” iniPeg “to” destPeg
 `hanoi(tmpPeg, destPeg, tmpPeg, n-1)`
}`
public void hanoi(int iniPeg, int destPeg, int tmpPeg, int n) {
if (n == 1)
 System.out.println("Move disk from " + iniPeg + " to " + destPeg);
else {
 hanoi(iniPeg,tmpPeg,destPeg,n-1)
 System.out.println ("Move disk from " + iniPeg + " to " + destPeg);
 hanoi(tmpPeg,destPeg,tmpPeg,n-1)
}

Java Implementation
Towers of Hanoi Recursive Solution

• Note that the number of moves increases exponentially as the number of disks increases!
 • So, how long will it take for the monks to move those 64 disks?

• The recursive solution is simple and elegant to express (and program); an iterative solution to this problem is much more complex