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Implementation 
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Objectives 

• Examine a linked list implementation of 

the Stack ADT 
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Another Stack Implementation 

• We will now explore a linked list 

implementation of the Stack collection 

• The elements of the stack are stored 

in nodes of a linked list 

• It will implement the same interface 

(Stack ADT) as the array-based 

implementation; only the underlying 

data structure changes! 
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Linked Implementation of a Stack 

• Recall that we need a container to hold the 

data elements, and something to indicate the 

top of the stack. 

• Our container will be a linked list of nodes, 

with each node containing a data element. 

• The top of the stack will be the first node of 

the linked list. 

• So, a reference to the first node of the linked list 

(top) is also the reference to the whole linked list! 

• We will also keep track of the number of 

elements in the stack (count) 
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Linked Implementation of a Stack 
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Discussion 

• Where does all the activity take place in 

a stack (i.e. the pushes and the pops)? 

• So, where is this happening in the 

linked list implementation? 
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Linked Implementation of a Stack 
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The LinkedStack Class 
• Note that it is called “LinkedStack.java” only to differentiate it for 

us from the array implementation “ArrayStack.java” 

• The nodes in the linked list are represented 
by the LinearNode class defined in the 

previous topic. 

• The attributes (instance variables) are: 

• top: a reference to the first node (i.e. a 

reference to  the linked list) 

• So it is of type LinearNode<T> 

• count: a count of the current number of 

elements in the stack 
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//----------------------------------------------------------------- 

//  Creates an empty stack.  

//-----------------------------------------------------------------  

public LinkedStack () 

{ 

 top = null; 

 count = 0; 

} 
The 

LinkedStack 

constructor 
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//----------------------------------------------------------------- 

//  Adds the specified element to the top of the stack. 

//----------------------------------------------------------------- 

public void push (T element) 

{ 

   LinearNode<T> temp = new LinearNode<T> (element); 

 

   temp.setNext(top); 

   top = temp; 

   count++; 

} 

   Where in the linked list is  the element added? 

The push( ) 

operation 
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//----------------------------------------------------------------- 

//  Removes the element at the top of the stack and returns 

//  a reference to it. Throws an EmptyCollectionException if 

//  the stack is empty. 

//----------------------------------------------------------------- 

public T pop( ) throws EmptyCollectionException 

{ 

   if (isEmpty( )) 

      throw new EmptyCollectionException(“Stack” ); 

   T result = top.getElement( ); 

   top = top.getNext( ); 

   count--; 

   return result; 

} 

From where in the linked list is the element removed? 

The pop( ) 

operation 
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The Other Operations 

• Write the code for the methods 

 

• peek 

• isEmpty 

• size 

• toString 
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Discussion 

• Where does the stack grow and shrink? 

• What happens when the stack is 

empty? 

• Can the stack be full? 

 


