
Stack: a Linked

Implementation

5-2

Objectives

• Examine a linked list implementation of

the Stack ADT

5-3

Another Stack Implementation

• We will now explore a linked list

implementation of the Stack collection

• The elements of the stack are stored

in nodes of a linked list

• It will implement the same interface

(Stack ADT) as the array-based

implementation; only the underlying

data structure changes!

5-4

Linked Implementation of a Stack

• Recall that we need a container to hold the

data elements, and something to indicate the

top of the stack.

• Our container will be a linked list of nodes,

with each node containing a data element.

• The top of the stack will be the first node of

the linked list.

• So, a reference to the first node of the linked list

(top) is also the reference to the whole linked list!

• We will also keep track of the number of

elements in the stack (count)

5-5

Linked Implementation of a Stack

count

4

top

A stack s with 4 elements

After pushing a fifth element

count

5

top

s

s

5-6

Discussion

• Where does all the activity take place in

a stack (i.e. the pushes and the pops)?

• So, where is this happening in the

linked list implementation?

5-7

count

4

top

After popping an element

After popping another element

count

3

top

s

s

Linked Implementation of a Stack

5-8

The LinkedStack Class
• Note that it is called “LinkedStack.java” only to differentiate it for

us from the array implementation “ArrayStack.java”

• The nodes in the linked list are represented
by the LinearNode class defined in the

previous topic.

• The attributes (instance variables) are:

• top: a reference to the first node (i.e. a

reference to the linked list)

• So it is of type LinearNode<T>

• count: a count of the current number of

elements in the stack

5-9

//---

// Creates an empty stack.

//---

public LinkedStack ()

{

 top = null;

 count = 0;

}
The

LinkedStack

constructor

5-10

//---

// Adds the specified element to the top of the stack.

//---

public void push (T element)

{

 LinearNode<T> temp = new LinearNode<T> (element);

 temp.setNext(top);

 top = temp;

 count++;

}

 Where in the linked list is the element added?

The push()

operation

5-11

//---

// Removes the element at the top of the stack and returns

// a reference to it. Throws an EmptyCollectionException if

// the stack is empty.

//---

public T pop() throws EmptyCollectionException

{

 if (isEmpty())

 throw new EmptyCollectionException(“Stack”);

 T result = top.getElement();

 top = top.getNext();

 count--;

 return result;

}

From where in the linked list is the element removed?

The pop()

operation

5-12

The Other Operations

• Write the code for the methods

• peek

• isEmpty

• size

• toString

5-13

Discussion

• Where does the stack grow and shrink?

• What happens when the stack is

empty?

• Can the stack be full?

