
Allocating Memory to Variables

Consider the following fragment of java code

 int a;

 int b;

When this program is compiled memory is allocated to both
variables. Since a and b are of type int and this is a primitive type
in Java, the amount of memory allocated to a is large enough to
store any value given to this variable; similarly for the memory
allocated to b.

Allocating Memory to Variables

0 1 2 3 4

5 6 7 8 9

Memory

We can think of the memory of the computer as a
group of cells where we can store values. Each cell has
a unique address that can be used to access it. Each
cell, for example, might consist of 1 byte (or 8 bits).

.

.

.

Memory cell Memory address

Allocating Memory to Variables
For example, if a is allocated to address 100 and b is allocated to
address 150, the computer’s memory will look like this:

100 150

a and b are assigned each a block of 4 bytes because in Java an int
has a size of 4 bytes. The first byte allocated to a is in address 100,
the second one in address 101, and so on.
Java keeps track of where the variables are stored in memory
in a table called the symbol table.

a b
4 bytes 4 bytes

Allocating Memory to Variables

The computer’s memory will look like this:

100 150

If now the following code is executed:
 a = 3;
 b = 15;

3 15

Allocating Memory to Variables
Non-primitive variables are handled in a different manner.
Consider the following Java class representing a rectangle:

public class Rectangle {
 private int width, height;

 public Rectangle (int w, int h) {
 width = w;
 height = h;
 }

 public int getArea () {
 return width * height;
 }
}

Allocating Memory to Variables

400

Consider the following Java code:

 Rectangle r;
 r = new Rectangle (10,5);

When the declaration of r is processed (statement Rectangle r;),
a block of memory is allocated to r, say starting at address 400
and large enough to store a reference to an object of class
Rectangle:

null

Allocating Memory to Variables
By default Java stores the value null in each non-primitive
variable when it is declared. When the object is created:

 r = new Rectangle (10,5);

a block of free memory large enough to store the above
object of the class Rectangle (large enough to store the int
values for width and height and the methods of the class
Rectangle) is allocated to this object and the values 10 and 5
are stored in it. Let this block of memory start at address 500.

Note that the object is not stored in address 400, which was
allocated to r. Instead in address 400 the computer stores the
address 500 of the above object. The computer’s memory
will now look like this:

Allocating Memory to Variables

400
500

500

10
5

getArea()

Object
of class
Rectangle

r

Allocating Memory to Variables
Variable r is called a reference variable, as it does not store
an object, but a reference or an address of an object. To
access the content of the object referenced by r in Java we
use the dereferencing operator “.”.

So, for example r.width has the value 10 and r.height has the
value 5. Invoking the method r.getArea() will return the value
50.

