
The need for Programming Languages

Computers are very simple devices in that they only

understand a handful of simple commands, like adding

two numbers or reading a value from memory. The set

of commands understood by a computer is called

machine code.

The processor is the component of a computer that

executes the commands in a program. Each processor

has its own machine code.

A program needs to be stored in the memory of the

computer, so it can be executed. Information is stored in

a computer in binary format, i.e, information is encoded

as a sequence of 0’s and 1’s.

Below is a binary program in machine code for an old

processor called 8086. This program prints the word

“hello” on the screen.

1011101000001100000000011011010000001001110011

0100100001101110000000000001001100110011010010

0001010010000110010101101100011011000110111100

10110000100000010101111011011110111001001101100

01100100000100001000011010000110001101111

Binary code is hard for humans to understand, as a

sequence of 0’s and 1’s has no meaning to us.

Compare the above binary program with the following

equivalent python program

 print (“hello”)

Python is called a high level programming language

and it was designed to make computer programs

readable to humans. However, a computer does not

understand python, java, C++, or any other high level

programming language.

A compiler is a piece of software that translates

programming language into code that the computer

can understand.

In this course we will be writing programs in java. A

java program must be stored in a file with the extension

.java. A java compiler does not directly produce

machine code, but it translates the java program into

another language called java bytecode. Java bytecode

is a kind of intermediate language.

Java bytecode is stored in files with the extension

.class. A java interpreter or virtual machine can execute

the java bytecode.

Eclipse has an integrated java compiler that runs as

you type your program. If you want to compile your

java program for a terminal or command window, the

name of the java compiler is javac and the name of the

java interpreter is java.

The following two classes are used to illustrate the

notions of instance variables and public and private

methods. Class Person.java represents objects, each

one of which stores the first name, last name, and

email address of an individual. Setter and getter

methods are used to access the private information

stored in an object of this class.

Class SocialNetwork.java has an array instance

variable called listFriends which can store a set of

objects of the class Person. Method add allows a

new Person object to added to the array. Notice that

the size of the array is increased as more data items

are stored in it. Method expandCapacity() doubles the

size of the array and copies the information from the

smaller array to the larger one.

public class Person {

 /* Attribute declarations */

 private String lastName; // last name

 private String firstName; // first name

 private String email; // email address

 public Person() { /* Constructor */

 lastName = “”;

 firstName = “”;

 email = “”;

 }

 /* Constructor initializes the person's name and

 email address */

 public Person(String first, String last, String mail) {

 firstName = first;

 lastName = last;

 email = mail;

 }

 public String getName() {

 return firstName + " " + lastName;

 }

 public String getEmail() {

 return email;

 }

 public void setEmail (String mail) {

 email = mail;

 }

 public void setName(String newFirst, String newLast) {

 firstName = newFirst;

 lastName = newLast;

 }

 public String toString() {

 String s = firstName + " " + lastName + "\t" + email;

 return s;

 }

 /**

 * equals method determines whether two Person objects

 * have the same name

 * @param other: Person object that this is compared to

 * @return true of they have the same first name and last

 * name, false otherwise

 */

 public boolean equals(Person other){

 if (this.firstName.equals(other.firstName) &&

 this.lastName.equals(other.lastName))

 return true;

 else

 return false;

 }

 }

public class SocialNetwork {

 // default size of array

 private final int DEFAULT_MAX_FRIENDS = 10;

 /* Attribute declarations */

 private Person[] friendList; // list of friends

 private int numFriends; // current number of

 // persons in list

 /**

 * Constructor creates person array of default size

 */

 public SocialNetwork () {

 friendList = new Person[DEFAULT_MAX_FRIENDS];

 numFriends = 0;

 }

 /**

 * Constructor creates person array of specified size

 * @param max maximum size of array

 */

 public SocialNetwork(int max) {

 friendList = new Person[max];

 numFriends = 0;

 }

 public void add (String firstName, String lastName, String email) {

 Person friend = new Person(firstName, lastName, email);

 // if array is full, increase its capacity

 if (numFriends == friendList.length)

 expandCapacity();

 // add new friend at first free entry in array

 friendList[numFriends] = friend;

 numFriends++;

 }

/**

* expandCapacity method is a helper method

* that creates a new array to store friends with twice the

* Capacity of the existing one

*/

private void expandCapacity() {

 Person[] largerList = new Person[friendList.length * 2];

 for (int i = 0; i < friendList.length; i++)

 largerList[i] = friendList[i];

 friendList = largerList;

}

public String toString() {

 String s = "";

 for (int i = 0; i < numFriends; i++) {

 s = s + friendList[i].toString()+ "\n";

 }

 return s;

}

Class SocialNetwork contains a method for removing a data

item from the array. To remove a data item, say target, from the

array we first need to find the position of such an item in the

array. A simple way of looking for target in array friendList is to

take the data items stored in the array one by one starting at

the data item stored in index 0 and compare each one of them

with target until either

• target is found, or

• all data items have been examined and target is not found

The above algorithm for looking for a data item in a list is called

linear search.

Once item target has been found in the array we can remove it

by replacing it with the last item in the array. Pseudocode for

removing a data item from the array follows.

Algorithm remove(target)

Input: data item to be removed

Output: true if target was removed from the array; false

 if target was not found in the array

i = 0

while (i < numFriends) and (friendList[i] not equal target) do

 i = i+1

if i = numFriends then return false

else {

 friendList[i] = friendList[numFriends-1]

 friendList[numFriends-1] = null

 numFriends = numFriends -1

 return true

}

The advantage of writing an algorithm in pseudocode

is that we can concentrate on designing the steps

that the algorithm needs to perform to achieve the

desired task without having to think about how to

express the algorithm in correct java syntax.

Once we have designed a correct algorithm for a

problem in pseudocode, translating it into java is a

somewhat mechanical process.

Writing algorithms in pseudocode and then

translating them into java makes it easier to design

programs.

The beauty of pseudocode is that there is no fixed

syntax or rigid rules for it. Pseudocode is a mixture of

English and programming-like statements.

Each programmer comes up with their own version

of pseudocode. The programmer just needs to

ensure that pseudocode is understandable to other

people and that it is detailed enough that translation

into java or other programming language is simple.

There should be an (almost) one-to-one

correspondence between lines of pseudocode and

lines of java.

The java version for the remove algorithm follows.

public boolean remove(String firstName, String lastName) {

 Person target = new Person(firstName, lastName, "");

 // search the list for the specified friend

 int i = 0;

 while ((i < numFriends) && !friendList[i].equals(target))

 i++;

 if (i == numFriends) return false;

 else {

 // person found, remove by replacing with last one

 friendList[i] = friendList[numFriends - 1];

 friendList[numFriends - 1] = null;

 numFriends --;

 return true;

}

public class MyFriends {

 public static void main(String[] args) {

 SocialNetwork contacts = new SocialNetwork();

 contacts.add("Snoopy","Dog","snoopy@uwo.ca");

 contacts.add("Felix","Cat","felix@uwo.ca");

 contacts.add("Mickey","Mouse","mickey@uwo.ca");

 System.out.println(contacts.toString());

 }

}

The second line in the above class:

 public static void main (String[] args) {

states that method main, when invoked can receive any number of

arguments. Java will create an array of the correct size to store all

the arguments. Java was designed so that the first method that is

executed in any java program is main. The arguments that are

passed to this method are called the program arguments or

command line arguments.

The keyword static tells the java compiler that when the program is

executed a special object, sometimes called a static object, needs

to be created. Static objects are different from other objects in that

they are not created by the programmer with the new statement.

Since to run a java program objects need to be created first, static

objects solve the issue of how to create the very first object of a

program.

