
4-1

Algorithm insert (newNode,predecessor)

In: New node to be inserted after predecessor.

Out: {Insert newNode in linked list after predecessor; newNode

is inserted at the front of the list if predecessor is null.}

if predecessor = null then {

newNode.setNext(front)

front = newNode

}

else {

newNode.setNext(predecessor.getNext())

predecessor.setNext(newNode)

}

Algorithm for inserting a node in a singly linked list

4-2

/* Method to add newNode to the linked list after

node predecessor. */

public void insert (LinearNode<T> newNode,

LinearNode<T> predecessor) {

if (predecessor == null) {

newNode.setNext(front);

front = newNode;

}

else {

newNode.setNext(predecessor.getNext());

predecessor.setNext(newNode);

}

}

4-3

Algorithm delete (nodeToDelete)

In: node to delete

Out: true if the node was deleted, false otherwise

current = front

predecessor = null

while (current != null) and (current != nodeToDelete) do {

predecessor = current

current = current.getNext()

}

if current = null then return false

else {

if predecessor != null then

predecessor.setNext(current.getNext())

else front = front.getNext()

return true

}

Algorithm for deleting a node from a singly linked list

4-4

public boolean delete (LinearNode<T> nodeToDelete) {

LinearNode<T> current, predecessor;

current = front;

predecessor = null;

while ((current != null) && (current != nodeToDelete)) {

predecessor = current;

current = current.getNext();

}

if (current == null) return false;

else {

if (predecessor != null)

predecessor.setNext(current.getNext());

else front = front.getNext();

return true;

}

}

4-5

Doubly Linked List

front tail
element next

Node object

prev

4-6

public class LinearNodeDLL<T> {
private LinearNodeDLL<T> next;
private LinearNodeDLL<T> prev;
private T element;

public LinearNode() {
next = null;
prev = null;
element = null;

}

public LinearNode (T dataItem) {
next = null;
prev = null;
element = dataItem;

}

Java Class for a Node of a Doubly Linked List

