
6-1

Using Queues: Coded Messages

A repeating key is a sequence of integers that

determine by how much each character in a

message is shifted. Consider the repeating key

3 1 7 4 2 5

message: knowledge

encoded

message:

a b c d e f g h i j k l m n o p q r s t u v w x y z

3 1 7 4 2 5queue:

6-2

Using Queues: Coded Messages

A repeating key is a sequence of integers that

determine by how much each character in a

message is shifted. Consider the repeating key

3 1 7 4 2 5

message: knowledge

encoded

message: n

a b c d e f g h i j k l m n o p q r s t u v w x y z

1 7 4 2 5queue:

dequeued: 3

6-3

Using Queues: Coded Messages

A repeating key is a sequence of integers that

determine by how much each character in a

message is shifted. Consider the repeating key

3 1 7 4 2 5

message: knowledge

encoded

message: n

a b c d e f g h i j k l m n o p q r s t u v w x y z

1 7 4 2 5 3queue:

6-4

Using Queues: Coded Messages

A repeating key is a sequence of integers that

determine by how much each character in a

message is shifted. Consider the repeating key

3 1 7 4 2 5

message: knowledge

encoded

message: no

a b c d e f g h i j k l m n o p q r s t u v w x y z

7 4 2 5 3queue:

dequeued: 1

6-5

Using Queues: Coded Messages

A repeating key is a sequence of integers that

determine by how much each character in a

message is shifted. Consider the repeating key

3 1 7 4 2 5

message: knowledge

encoded

message: no

a b c d e f g h i j k l m n o p q r s t u v w x y z

7 4 2 5 3 1queue:

6-6

Using Queues: Coded Messages

A repeating key is a sequence of integers that

determine by how much each character in a

message is shifted. Consider the repeating key

3 1 7 4 2 5

message: knowledge

encoded

message: novangjhl

a b c d e f g h i j k l m n o p q r s t u v w x y z

4 2 5 3 1 7queue:

6-7

Algorithm dequeue() {

if queue is empty then ERROR

result = queue[front]

count = count – 1

queue[front] = null

front = (front + 1) mod (size of array queue)

return result

}

Where mod is the modulo operator (or modulus or

remainder), denoted % in Java.

Algorithm in Pseudocode for the Dequeue Operation

Using a Circular Array Representation of a Queue

6-8

Java Implementation for the Dequeue Operation

public T dequeue() {

if (queue.isEmpty())

throw new EmptyQueueException();

result = queue[front];

count = count – 1;

queue[front] = null;

front = (front + 1) % queue.length;

return result;

}

6-9

Algorithm enqueue(element)

if queue is full then expandQueue()

rear = (rear + 1) mod size of queue

queue[rear] = element

++count

Algorithm expandQueue()

q = new array of size 2 * size of queue

copied = 0 // number of elements copied to the larger array

i = 0 // index of next entry in array q

j = front // index of next entry in array queue

while copied < count do { // copy data to new array

q[i] = queue[j]

++i

j = (j + 1) mod size of queue

++ copied

}

rear = i – 1 // position of last element in the queue

front = 0

queue = q

Enqueue Operation Using a Circular Array Implementation

of a Queue

6-10

public void enqueue(T element) {

if (count == queue.length) expandQueue();

rear = (rear + 1) % queue.length;

queue[rear] = element;

++count;

}

private void expandQueue() {

T[] q = (T[]) new Object[2*queue.length];

copied = 0; // number of elements copied to the larger array

i = 0; // index of next entry in array q

j = front; // index of next entry in array queue

while (copied < count) {

q[i] = queue[j];

++i;

j = (j + 1) % queue.length;

++ copied;

}

rear = count – 1;

front = 0;

queue = q;

}

