Using Queues: Coded Messages

A repeating key Is a sequence of integers that
determine by how much each character in a
message is shifted. Consider the repeating key

317425

cl|d|e|f |g|h]|i |] |k]|]l Imnjo|p|g|r |s|t |u|Vv|w]|X

message: knowledge
encoded
message:

queue: 3 1 7 4 2 5

Using Queues: Coded Messages

A repeating key Is a sequence of integers that
determine by how much each character in a

message is shifted. Consider the repeating key
317425

cdefghijkmopqrstuvwxy

message: knowledge
encoded

message: n dequeued: 3

queue: 1 7 4 2 5

6-2

Using Queues: Coded Messages

A repeating key Is a sequence of integers that
determine by how much each character in a

message is shifted. Consider the repeating key
317425

cdefghijkmopqrstuvwxy

message: knowledge
encoded

message. I

queue; 1 7 4 2 5 3

6-3

Using Queues: Coded Messages

A repeating key Is a sequence of integers that
determine by how much each character in a

message is shifted. Consider the repeating key
317425
AN

cl|d|e|f (g|h|i |] |kK|l [mnjojp|g]|r|s|t|u|Vv | w|Xx]|Yy

message: knowledge
encoded

message: no dequeued: 1

gueue: ! 4 2 5 3

6-4

Using Queues: Coded Messages

A repeating key Is a sequence of integers that
determine by how much each character in a

message is shifted. Consider the repeating key
317425

cl|d|e|f (g|h|i |] |kK|l [mnjojp|g]|r|s|t|u|Vv | w|Xx]|Yy

message: knowledge
encoded

message. Nno

gueue: ! 4 2 5 3 1

6-5

Using Queues: Coded Messages

A repeating key Is a sequence of integers that
determine by how much each character in a

message is shifted. Consider the repeating key
317425

cl|d|e|f (g|h|i |] |kK|l [mnjojp|g]|r|s|t|u|Vv | w|Xx]|Yy

message: knowledge
encoded

message: novangjhl

queue: 4 2 5 3 1 7

6-6

Algorithm in Pseudocode for the Dequeue Operation
Using a Circular Array Representation of a Queue

Algorithm dequeue() {
If queue is empty then ERROR

result = queue]front]
count=count—-1

gueue[front] = null
front = (front + 1) mod (size of array queue)

return result

}

Where mod is the modulo operator (or modulus or
remainder), denoted % in Java.

6-7

Java Implementation for the Dequeue Operation

public T dequeue() {
If (Qqueue.iIsEmpty())
throw new EmptyQueueException();
result = queuelfront];
count = count — 1;
gueue[front] = null;
front = (front + 1) % queue.length;
return result;

6-8

Enqueue Operation Using a Circular Array Implementation
of a Queue

Algorithm enqueue(element)
If queue is full then expandQueue()
rear = (rear + 1) mod size of queue
gueue[rear] = element
++count

Algorithm expandQueue()
g = new array of size 2 * size of queue
copied = 0 // number of elements copied to the larger array
1=0 // iIndex of next entry in array q
] = front // index of next entry in array queue
while copied < count do {// copy data to new array
qlil = queue]]
++|
] =(+1) mod size of queue
++ copied
}
rear =i— 1 // position of last element in the queue
front=0
queue =

6-9

public void enqueue(T element) {
If (count == queue.length) expandQueue();
rear = (rear + 1) % queue.length;
gueue[rear] = element;
++count;

}

private void expandQueue() {
T[l g = (T[]) new Object[2*queue.length];
copied = 0; // number of elements copied to the larger array
| = 0; // index of next entry in array g
] = front; // index of next entry in array queue
while (copied < count) {
qli] = queue(];
++;
] =(+ 1) % queue.length;
++ copied,;
}
rear = count — 1;
front = O;

queue = q; 610

