Recursive definition of sets and structural induction

Instructor: Marc Moreno Maza
Tower of Hanoi game

• Rules of the game:
 – Start with all disks on the first peg.
 – At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 – Goal: move the whole tower onto the second peg.

• Question: how many steps are needed to move the tower of 8 disks? How about n disks?
Tower of Hanoi game

• Rules of the game:
 – Start with all disks on the first peg.
 – At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 – Goal: move the whole tower onto the second peg.
• Question: how many steps are needed to move the tower of 8 disks? How about n disks?

• Let us call the number of moves needed to transfer n disks $H(n)$.
 – Names of pegs do not matter: from any peg i to any peg $j \neq i$ would take the same number of steps.
• Basis: only one disk can be transferred in one step.
 – So $H(1) = 1$
• Recursive step:
 – suppose we have $n-1$ disks. To transfer them all to peg 2, need $H(n-1)$ number of steps.
 – To transfer the remaining disk to peg 3, 1 step.
 – To transfer $n-1$ disks from peg 2 to peg 3 need $H(n-1)$ steps again.
 – So $H(n) = 2H(n-1) + 1$ (recurrence).
• Closed form: $H(n) = 2^n - 1$.
Recurrence relations

- **Recurrence**: an equation that defines an \(n^{th} \) element in a sequence in terms of one or more of previous terms.
 - \(H(n) = 2H(n-1)+1 \)
 - \(F(n) = F(n-1)+F(n-2) \)
 - \(T(n) = aT(n-1) \)

- **A closed form** of a recurrence relation is an expression that defines an \(n^{th} \) element in a sequence in terms of \(n \) directly.
 - Often use recurrence relations and their closed forms to describe performance of (especially recursive) algorithms.
Recursive definitions of sets

• So far, we talked about recursive definitions of sequences. We can also give recursive definitions of sets.
 – E.g: recursive definition of a set \(S = \{0, 1\}^* \)
 • **Basis:** empty string is in \(S \).
 • **Recursive step:** if \(w \in S \), then \(w0 \in S \) and \(w1 \in S \)
 – Here, \(w0 \) means string \(w \) with 0 appended at the end; same for \(w1 \)
Recursive definitions of sets

• Recursive definition of a set \(S = \{0, 1\}^* \)
 – Alternatively:
 • **Basis**: empty string, 0 and 1 are in \(S \).
 • **Recursive step**: if \(s \) and \(t \) are in \(S \), then \(st \in S \)
 – here, \(st \) is concatenation: symbols of \(s \) followed by symbols of \(t \)
 – If \(s = 101 \) and \(t = 0011 \), then \(st = 1010011 \)
 – Additionally, need a **restriction condition**: the set \(S \) contains only elements produced from basis using recursive step rule.
Trees

- In computer science, a **tree** is an undirected graph without cycles
 - **Undirected**: all edges go both ways, no arrows.
 - **Cycle**: sequence of edges going back to the same point.
Trees

• **Recursive definition of trees:**

 – **Base:** A single vertex v is a tree.

 – **Recursion:**

 • Let T be a tree, and v a new vertex.

 • Then a new tree consist of T, v, and an edge (connection) between some vertex of T and v.

 – **Restriction:**

 • Anything that cannot be constructed with this rule from this base is not a tree.
Arithmetic expressions

• Suppose you are writing a piece of code that takes an arithmetic expression and, say evaluates it.
 – “5*3-1”, “40-(x+1)*7”, etc

• How to describe a valid arithmetic expression?
Arithmetic expressions

• *How to describe a valid arithmetic expression?*
• Define a set of all valid arithmetic expressions *recursively.*

 – **Base:** A number or a variable is a valid arithmetic expression.
 • 5, 100, x, a

 – **Recursion:**
 • If A and B are valid arithmetic expressions, then so are \((A), A + B, A - B, A * B, A / B.\)

 – Constructing 40-(x+1)*7: first construct 40, x, 1, 7. Then (x+1). Then (x+1)*7, finally 40-(x+1)*7

 – Caveat: how do we know the order of evaluation? On that later.

 – **Restriction:** nothing else is a valid arithmetic expression.
Formulas

• What is a well-formed propositional logic formula?

 \[(p \lor \neg q) \land r \rightarrow (\neg p \rightarrow r)\]

 – **Base**: a propositional variable \(p, q, r \ldots\)
 • Or a constant \(TRUE, FALSE\)

 – **Recursion**:
 • If \(F\) and \(G\) are propositional formulas, so are \((F), \neg F, F \land G, F \lor G, F \rightarrow G, F \leftrightarrow G.\)

 – And nothing else.
Formulas

• What is a well-formed predicate logic formula?
 – $\exists x \in D \ \forall y \in \mathbb{Z} \ P((x, y) \lor Q(x, z)) \land x = y$
 – **Base**: a predicate with free variables
 • $P(x), \ x=y, \ ...$
 – **Recursion**:
 • If F and G are predicate logic formulas, so are (F), $\neg F$, $F \land G$, $F \lor G$, $F \rightarrow G$, $F \leftrightarrow G$
 • If F is a predicate logic formula with a free variable x, then $\exists x \in D \ F$ and $\forall x \in D \ F$ are predicate logic formulas.
 – **And nothing else**.
 • So $\exists x \in \text{People} \ Likes(x, y \land x)$, $Likes(y \neq x)$ is not a well-formed predicate logic formula!
Grammars

• A context-free grammar consists of
 – A set V of variables (using capital letters)
 • Including a start variable S.
 – A set Σ of terminals (disjoint from V; alphabet)
 – A set R of rules, where each rule consists of a variable from V and a string of variables and terminals.
 • If $A \rightarrow w$ is a rule, we say variable A yields string w.
 – This is not the same “\rightarrow” as implication, a different use of the same symbol.
 • We use shortcut “$|$” when the same variable might yield several possible strings: $A \rightarrow w_1 | w_2 | \ldots | w_k$
 • Can use A again within the rule: Recursion!
 – Different occurrences of the same variable can be interpreted as different strings.
 • When left with just terminals, a string is derived.
Grammars

• A general recursive definition for these is called a grammar.
 – In particular, here we have “context-free” grammars, where symbols have the same meaning wherever they are.

• A language generated by a grammar consists of all strings of terminals that can be derived from the start variable by applying the rules.
 – All strings are derived by repeatedly applying the grammar rules to each variable until there are no variables left (just the terminals).
Examples of grammars

• Example: **language** \{1, 00\} consisting of two strings 1 and 00
 \[S \rightarrow 1 | 00 \]
 • Variables: S. Terminals: 1 and 00.

• Example: **strings** over \{0, 1\} with all 0s before all 1s.
 \[S \rightarrow 0S | S1 | _ \]
 • Variables: S. Terminals: 0 and 1.
Examples of grammars

• Example: **propositional formulas.**

 1. $F \rightarrow F \lor F$
 2. $F \rightarrow F \land F$
 3. $F \rightarrow \neg F$
 4. $F \rightarrow (F)$
 5. $F \rightarrow p \mid q \mid r \mid TRUE \mid FALSE$

• Here, the only variable is F (it is a start variable), and terminals are
 $\lor, \land, \neg, (,), p, q, r, TRUE, FALSE$

• To obtain $(p \lor \neg q) \land r$, first apply rule 2, then rule 1, then rule 5 to get p, then rule 3, then rule 5 to get q, then rule 5 to get r.
Examples of grammars

• Example: arithmetic expressions

 \[\begin{align*}
 EXPR & \rightarrow EXPR + EXPR \mid EXPR - EXPR \mid EXPR \times \\
 & \quad \mid EXPR / EXPR \mid (EXPR) \mid NUMBER \mid -NUMBER \\
 NUMBER & \rightarrow 0DIGITS \mid \ldots \mid 9DIGITS \\
 DIGITS & \rightarrow _ \mid NUMBER
 \end{align*} \]

• Here, _ stands for empty string.

 Variables: EXPR, NUMBER, DIGITS (S is starting).

 Terminals: +, -, *, /, 0, ..., 9.

• We used separate NUMBER to avoid multiple “-”.

• And separate DIGITS to have an empty string to finish writing a number, but to avoid an empty number.
Encoding order of precedence

• Easier to specify in which order to process parts of the formula.
 – Better grammar for arithmetic expressions (for simplicity, with x,y,z instead of numbers):
 1. $EXPR \rightarrow EXPR + TERM \mid EXPR - TERM \mid TERM$
 2. $TERM \rightarrow TERM \times FACTOR \mid TERM / FACTOR \mid FACTOR$
 3. $FACTOR \rightarrow (EXPR) \mid x \mid y \mid z$
 – Here, variables are EXPR, TERM and FACTOR (with EXPR a starting variable).
 – Now can encode precedence.
 • And put parentheses more sensibly.
Parse trees.

Visualization of derivations:

parse trees.

1. \(EXPR \rightarrow EXPR + TERM \mid EXPR - TERM \mid TERM \)

2. \(TERM \rightarrow TERM \ast \)
 \(FACTOR \mid TERM \div \)
 \(FACTOR \mid FACTOR \)

3. \(FACTOR \rightarrow (EXPR) \mid x \mid y \mid z \)

• String \((x+y)\ast z\)
Parse trees.

• Visualization of derivations: parse trees.
 – Simpler example:
 • $S \rightarrow 0S \mid S1 \mid -$
 • String 001
Puzzle

• Do the following two English sentences have the same parse trees?

 – Time flies like an arrow.

 – Fruit flies like an apple.
Structural induction

• Let \(S \subseteq U \) be a recursively defined set, and \(F(x) \) is a property (of \(x \in U \)).

• Then
 – if all \(x \) in the base of \(S \) have the property,
 – and applying the recursion rules preserves the property,
 – then all elements in \(S \) have the property.
Multiples of 3

• Let’s define a set S of numbers as follows.
 – **Base:** $3 \in S$
 – **Recursion:** if $x, y \in S$, then $x + y \in S$

• **Claim:** all numbers in S are divisible by 3
 – That is, $\forall x \in S \exists z \in \mathbb{N} \ x = 3z$.
Multiples of 3

• Proof (by structural induction).
 – Base case: 3 is divisible by 3 (y=1).
 – Recursion: Let $x, y \in S$. Then $\exists z, u \in \mathbb{N} \ x = 3z \land y = 3u$.
 • Then $x + y = 3z + 3u = 3(z + u)$.
 • Therefore, $x + y$ is divisible by 3.
 – As there are no other elements in S except for those constructed from 3 by the recursion rule, all elements in S are divisible by 3.
Binary trees

• **Rooted trees** are trees with a special vertex designated as a root.

 – Rooted trees are **binary** if every vertex has **at most three edges**: one going towards the root, and two going away from the root. **Full** if every vertex has either 2 or 0 edges going away from the root.
Binary trees

• **Recursive definition of full binary trees:**

 – **Base:** A single vertex \(v \) is a full binary tree with that vertex as a root.

 – **Recursion:**

 • Let \(T_1, \ T_2 \) be full binary trees with roots \(r_1, r_2 \), respectively. Let \(v \) be a new vertex.

 • A new full binary tree with root \(v \) is formed by connecting \(r_1 \) and \(r_2 \) to \(v \).

 – **Restriction:**

 • Anything that cannot be constructed with this rule from this base is not a full binary tree.
Height of a full binary tree

- The **height** of a rooted tree, $h(T)$, is the maximum number of edges to get from any vertex to the root.
 - Height of a tree with a single vertex is 0.

- Claim: Let $n(T)$ be the number of vertices in a full binary tree T. Then $n(T) \leq 2^{h(T)+1} - 1$
Height of a full binary tree

- Proof (by structural induction)
 - **Base case**: a tree with a single vertex has \(n(T) = 1 \) and \(h(T) = 0 \). So \(2^{h(T)+1} − 1 = 1 \geq 1 \)
 - **Recursion**: Suppose \(T \) was built by attaching \(T_1, T_2 \) to a new root vertex \(v \).
 - Number of vertices in \(T \) is \(n(T) = n(T_1) + n(T_2) + 1 \)
 - Every vertex in \(T_1 \) or \(T_2 \) now has one extra step to get to the new root in \(T \). So \(h(T) = 1 + \max(h(T_1), h(T_2)) \)
 - By the induction hypothesis, \(n(T_1) \leq 2^{h(T_1)+1} − 1 \) and \(n(T_2) \leq 2^{h(T_2)+1} − 1 \)
 - \(n(T) = n(T_1) + n(T_2) + 1 \)
 \[\leq 1 + (2^{h(T_1)+1} − 1) + (2^{h(T_2)+1} − 1) \]
 \[\leq 2 \cdot \max(2^{h(T_1)+1}, 2^{h(T_2)+1}) − 1 \]
 \[\leq 2 \cdot \max(h(T_1), h(T_2)) + 1 − 1 \]
 \[= 2 \cdot 2^{h(T)} − 1 = 2^{h(T)+1} − 1 \]
 - Therefore, the number of vertices of any binary tree \(T \) is less than \(2^{h(T)+1} − 1 \)
Height of a full binary tree

- Claim: Let \(n(T) \) be the number of vertices in a full binary tree \(T \). Then \(n(T) \leq 2^{h(T)+1} - 1 \)

- Alternatively, height of a binary tree is at least \(\log_2 n(T) \)
 - If you have a recursive program that calls itself twice (e.g., within if ... then ... else ...)
 - Then if this code executes \(n \) times (maybe on \(n \) different cases)
 - Then the program runs in time at least \(\log_2 n \), even when cases are checked in parallel.